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Felix Klein’s Erlangen Program (1872) revolutionized mathematics by defining geometry through
transformation group invariants, yet lacked computational implementation for complex systems.
We present the HACKS framework—Hilbert-Arnold-Călugăreanu-Kolmogorov-Salden—organizing
five foundational mathematical systems into a conceptual structure for analyzing transformation-
covariant geometric properties. Hilbert’s transvectant theory provides algebraic invariants via
syzygy chains. Kolmogorov’s superposition theorem and Arnold’s geometric mechanics reduce mul-
tivariable complexity to univariate geometry, solving Hilbert’s 13th problem, while KAM theory
addresses perturbation persistence. Călugăreanu’s exact integral formulas compute linking numbers
through the ABC recurrence on Frenet-Serret frames. Salden’s complete irreducible bases construct
multi-local differential invariants for transformation groups acting on jet spaces. We demonstrate
that detection of geometric singularities where Gaussian curvature vanishes is covariant under per-
spective projection transformations: the determinant condition det(∇I1,∇I2) = 0 is preserved
under Jacobian transformations because linear maps preserve vector parallelism. Exact analytical
gradient computation enables numerical validation with three surface morphisms (original, additive,
multiplicative), revealing that additive transformations preserve parabolic line topology while mul-
tiplicative transformations can destroy it. The framework connects Klein’s geometric program to
computational methods with applications in computer vision and surface analysis. We propose that
biological visual systems may implement related invariant detection mechanisms, though experi-
mental validation through psychophysical experiments and neurophysiological recordings remains
essential future work.
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INTRODUCTION: A JOURNEY THROUGH GEOMETRY

The Scene: Erlangen, 1872

Picture a young mathematician, just 23 years old, standing before the faculty of the University of Erlangen. Felix
Klein is about to deliver his Antrittsrede—his inaugural lecture—and in doing so, revolutionize how we think about
geometry itself [1, 2].

The nineteenth century had witnessed an explosion of geometries. Euclid’s familiar world of points, lines, and circles
had been joined by strange new realms: the projective geometry of Poncelet, where parallel lines meet at infinity; the
hyperbolic geometry of Bolyai and Lobachevsky, where Euclid’s parallel postulate fails; the differential geometry of
Gauss and Riemann, where space itself curves. Each geometry seemed to have its own rules, its own theorems, its
own reality.

Klein’s stroke of genius was to ask: What makes these all “geometry”?

His answer was transformations. A circle remains a circle when you rotate it, translate it, or reflect it—these
are the Euclidean transformations. But project a circle onto a screen from an oblique angle, and it becomes an
ellipse. Yet ellipses and circles are “the same” in projective geometry because they transform into each other under
projection. Geometry, Klein declared, is the study of properties that remain invariant under a group of
transformations.



4

This insight—now called the Erlangen Program—unified the zoo of nineteenth-century geometries into a single
conceptual framework. Euclidean geometry studies invariants under rigid motions. Projective geometry studies invari-
ants under perspective transformations. Topology studies invariants under continuous deformations. Each geometry
corresponds to a transformation group, and the “geometric properties” are precisely what the group preserves.

The Unfinished Quest

Yet Klein’s program, for all its elegance, remained incomplete. He had shown what geometric properties are, but
not how to find them systematically. Four fundamental obstacles stood in his way:

1. Computational complexity: How do you actually construct all invariants for a given transformation group?
As dimensions increase, invariants proliferate combinatorially. Klein had no algorithms for this explosion.

2. Topological mystery: Knots, surfaces, and manifolds resist purely algebraic description. How many holes
does a surface have? Can this knot be untangled? These questions seemed beyond Klein’s group-theoretic
approach.

3. Biological puzzle: Klein speculated that aesthetic perception—our sense of beauty in art and nature—might
involve detecting geometric invariants. But he had no evidence that biological systems actually compute group-
theoretic properties.

4. Dimensional curse: Physical systems seem low-dimensional despite the exponential growth of invariants. How
does nature achieve this reduction?

This paper tells the story of how five mathematical frameworks—developed over the next century—came together to
address Klein’s unfinished quest. We call this synthesis theHACKS framework, an acronym for its five contributors:
Hilbert, Arnold, Călugăreanu, Kolmogorov, and Salden.

The HACKS Synthesis

Each contributor solved a piece of Klein’s puzzle:
David Hilbert (1862–1943) attacked the computational problem head-on. In his monumental 1893 work on

invariant theory [4], he proved that every system of polynomial invariants has a finite generating set—you don’t need
infinitely many invariants, just a finite “basis” from which all others can be constructed. His tool was the transvectant,
an operation that combines two polynomials to produce new invariants. Hilbert showed that all invariants arise from
iterated transvectants, with syzygies (polynomial relations between invariants) organizing the structure. This solved
Klein’s first obstacle: there is a systematic algorithm for constructing invariants.
Andrey Kolmogorov (1903–1987) and Vladimir Arnold (1937–2010) solved a problem Hilbert himself had

posed. Hilbert’s 13th problem asked whether some functions of three variables are “irreducibly complex”—whether
they cannot be built from simpler pieces. In 1957, Kolmogorov shocked the mathematical world by proving that any
continuous function of any number of variables can be represented as a composition of continuous functions of just one
variable [6, 7]. This solved Klein’s dimensional curse: high-dimensional complexity always reduces to one-dimensional
structure. Arnold extended this geometric insight to classical mechanics, showing that physical motion is geodesic flow
on infinite-dimensional spaces, with topological invariants (like the linking of vortex lines) governing dynamics [9].

Gheorghe Călugăreanu (1902–1976), a Romanian mathematician, discovered something remarkable about
tangled curves. In his 1959–1961 papers [12, 13], he found exact integral formulas for topological invariants of knots—
the writhe, twist, and linking number. His ABC recurrence generates an infinite hierarchy of invariants from the
Frenet frame of a curve. This solved Klein’s topological mystery: there are systematic ways to compute topological
invariants, through elegant integral formulas that count how curves wind around each other.

Alfons Salden (1962–) brought the framework into the computational world. Working on multi-scale image
analysis in the 1990s [19–21], he constructed complete bases of multi-local differential invariants—measurements that
combine information from multiple points and multiple scales while remaining invariant under transformations. This
bridges abstract invariant theory to practical computation: how do you actually measure geometric properties from
images, despite noise, discretization, and limited resolution? Salden’s dynamic scaling framework provides the answer,
connecting Klein’s abstract program to the messy reality of visual perception.
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The Central Discovery: Active Vision is Necessary

This paper reports a surprising discovery that emerged from applying the HACKS framework to binocular vision:
passive observation is mathematically incomplete for detecting geometric singularities.

When two eyes view a curved surface, each eye sees a slightly different image. The binocular resultant—a quantity
computed from the two image gradients—was expected to detect parabolic lines: the curves on a surface where
Gaussian curvature vanishes, marking the boundary between convex (bowl-shaped) and saddle-shaped regions. These
parabolic lines are geometrically fundamental, visible in every smooth object from a coffee cup to a human face.

But our analysis revealed a problem: the binocular resultant detects not only true parabolic lines but also false
positives—spurious curves arising from lighting geometry and perspective distortion. From a single viewpoint, you
cannot tell which detections are real geometry and which are artifacts.

The solution is active vision: the eye must move. Specifically, the rapid small eye movements called microsaccades
(3–5 per second during fixation) provide multiple viewpoints. The false positives shift with each viewpoint, but the
true parabolic lines stay fixed because they are intrinsic to the surface geometry. By computing the intersection across
multiple fixations, the visual system can filter out artifacts and recover true geometry.

This is not merely a computational trick—it reveals something profound about perception: seeing requires
moving. The philosopher J.J. Gibson [? ] argued that perception is an active process of exploration, not passive
reception. Our mathematical analysis provides the first rigorous proof that he was right: for geometric singularity
detection, active sampling is not optional but necessary.

A Reader’s Guide

This paper is written to be accessible to readers from diverse backgrounds—mathematicians, computer scientists,
biologists, artists, and curious minds. Technical sections develop the formalism rigorously, but each is preceded by
intuitive explanations. Figures are designed to convey key ideas visually. The narrative threads connect: from Klein’s
foundational vision, through the contributions of Hilbert, Arnold, Călugăreanu, Kolmogorov, and Salden, to the
surprising implications for how we perceive the world.

We invite you to read this paper as you might explore a sculpture: walking around it, viewing from different angles,
letting the structure reveal itself gradually. Some sections reward close attention to mathematical detail; others can
be appreciated for their conceptual sweep. The HACKS framework, like the geometry it studies, has invariant content
that persists across different perspectives.

THE HACKS FRAMEWORK: FIVE MATHEMATICAL PILLARS

“Mathematics is not about numbers, equations, computations, or algorithms: it is about understanding.”
—William Paul Thurston

In this section, we explore each of the five mathematical pillars of HACKS in detail. Each subsection begins with
an intuitive explanation accessible to non-specialists, then develops the technical machinery for those who wish to
follow the formalism. Think of this as a museum with five galleries—you can walk through quickly to get the overall
picture, or linger in any gallery that captures your interest.

Overview of the Five Pillars:

Contributor Key Tool Problem Solved

Hilbert Transvectants Finite generation of invariants

Kolmogorov Superposition Dimensional reduction

Arnold Geometric mechanics Stability and singularities

Călugăreanu ABC recurrence Topological invariants

Salden Multi-scale bases Computational measurement
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Hilbert’s Algebraic Invariant Theory

The Intuition: What Stays the Same When Things Change?

Imagine you have a rubber stamp with a pattern, and you press it onto paper from different angles, with different
pressures, in different orientations. Most features of the impression will change—its size, its position, its slant. But
some things might stay the same: perhaps the number of loops in the pattern, or whether two curves cross.

Those unchanging features are invariants. Hilbert’s achievement was to show that for polynomial patterns under
linear transformations, all such invariants can be computed systematically using a single operation: the transvectant.

Think of the transvectant as a “detector” that takes two patterns and produces a number measuring some geometric
relationship between them—a number that doesn’t change when you rotate, scale, or shear both patterns together.
By applying this detector repeatedly, you can build up a complete catalog of everything that stays the same.

The Formalism

David Hilbert’s 1893 monograph revolutionized invariant theory by providing systematic construction of all invari-
ants for transformation groups acting on polynomial spaces [4]. The fundamental tool is the transvectant operator.
For binary forms f(x, y) of degree m and g(u, v) of degree n, the r-th transvectant is defined by

(f, g)r =

r∑
k=0

(−1)k
(
r

k

)
∂rf

∂xk∂yr−k

∂rg

∂ur−k∂vk
. (1)

This formula encodes invariance under SL(2,C) through alternating signs ensuring symplectic preservation, bino-
mial coefficients maintaining homogeneity, and complementary partial derivatives creating covariant pairing. When
evaluated at (u, v) = (x, y), the transvectant becomes invariant under linear transformations. The degree reduction
property states deg((f, g)r) = m+n−2r, allowing systematic generation of lower-degree invariants from higher-degree
forms. Iteration through nested transvectants such as (f, (g, h)r)s creates rich algebraic structure where complex in-
variants emerge from simple building blocks.

Hilbert proved completeness: all polynomial invariants of binary forms under SL(2,C) are generated through
transvectants [4]. This makes the transvectant not merely one tool among many but the complete systematic generator
capturing all invariant information expressible algebraically. For example, the discriminant of a quadratic form
f(x, y) = ax2 + 2bxy + cy2 emerges as the second transvectant (f, f)2 = 8(ac− b2), showing how abstract operations
produce classical invariants through systematic differentiation.

Invariants satisfy polynomial relations called syzygies forming modules over the invariant ring. Hilbert’s Basis
Theorem guarantees finite generation: there exists a finite set {I1, . . . , Im} such that every invariant is expressible as
a polynomial in these generators [3]. First syzygies are polynomial relations

∑m
i=1 Pi(I1, . . . , Im) · Ii = 0, but these

satisfy second syzygies, creating chains that Hilbert proved terminate after finitely many steps. The Nullstellensatz
bridges algebra and geometry: if polynomial g vanishes on all common zeros of {fi}, then gk ∈ ⟨f1, . . . , fn⟩ for some
k. This means geometric conditions like singularities defined by vanishing determinants correspond to polynomial
ideal membership, making them computationally detectable through Gröbner basis algorithms.

Hilbert’s algebraic machinery provides the foundation for detecting geometric singularities through polynomial
invariants and syzygies. The transvectant construction and syzygy chains ensure that complex invariant systems
reduce to finite generating sets, making computational detection tractable. This algebraic framework connects directly
to Kolmogorov-Arnold superposition theory, which decomposes multivariable functions into univariate components,
and to Salden’s differential invariants, which measure these algebraic structures through gradient-based computations
on images and surfaces.

Superposition Resolving Hilbert’s 13th Problem

Hilbert’s 13th problem asked whether every continuous function of three variables can be built from functions
of two variables through composition. Hilbert believed the answer was no, expecting functions like x1/7 to require
irreducible three-variable structure. In 1957, Andrey Kolmogorov shocked mathematics by proving not just that
Hilbert was wrong, but that the situation was far more extreme [6].
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Theorem .1 (Kolmogorov Superposition). Any continuous function f : [0, 1]n → R admits representation

f(x1, . . . , xn) =

2n∑
q=0

Φq

(
n∑

p=1

ψq,p(xp)

)
, (2)

where Φq, ψq,p : R → R are continuous univariate functions.

This proves that functions of arbitrarily many variables decompose using only univariate functions and addition,
with no irreducible multivariable complexity. The number of outer functions Φq is merely 2n+1, growing linearly not
exponentially. The inner functions ψq,p can be chosen independently of f , depending only on dimension n, providing
a universal decomposition working for all continuous functions simultaneously.

Vladimir Arnold, Kolmogorov’s student, provided geometric depth through several contributions [7]. He proved
that even x1/7 decomposes through two-variable functions, directly answering Hilbert’s specific conjecture. Arnold’s
geometric interpretation views superposition as functional foliation: the decomposition in Equation (2) slices n-
dimensional function space into one-dimensional ridges where each ridge is a univariate function Φq evaluated along
linear combination

∑
p ψq,p(xp). The multivariable surface is fibered into univariate curves, with function values

obtained by summing contributions from 2n + 1 curves passing through each point. A function of many variables
becomes a high-dimensional landscape reconstructed by taking 2n+ 1 one-dimensional cross-sections along carefully
chosen directions, recording height profiles as univariate functions, and summing these profiles.

Arnold revolutionized classical mechanics by recasting it geometrically, showing physical systems are geodesic
flows on infinite-dimensional Lie groups [9]. The paradigmatic example is fluid dynamics where Arnold proved
Euler equations for incompressible fluids are geodesic equations on the group of volume-preserving diffeomorphisms
Diffµ(M). This group has Riemannian metric given by fluid kinetic energy ∥ϕ̇∥2 =

∫
M

∥v(x)∥2 dµ(x) where v = ϕ̇◦ϕ−1

is velocity field. The Euler equations ∂v/∂t+ (v · ∇)v = −∇p with ∇ · v = 0 are precisely geodesic equations for this
metric. Arnold proved that vorticity ω = ∇ × v satisfies topological conservation: helicity H =

∫
M
v · (∇ × v) d3x

is conserved, and this helicity is precisely the linking number of vortex lines weighted by circulation, connecting to
Călugăreanu’s writhe formula developed below.

Complete Hierarchies of Geometric-Topological Invariants From Recurrence

Gheorghe Călugăreanu’s 1959 and 1961 papers developed complete hierarchy of exact topological invariants for
closed space curves through the ABC recurrence [12, 13], extending Gauss’s 1833 discovery of the linking integral [11].
The foundation is Gauss’s linking number measuring how two closed curves C1 and C2 intertwine:

Lk(C1, C2) =
1

4π

∮
C1

∮
C2

(r1 − r2) · (dr1 × dr2)

|r1 − r2|3
. (3)

This has beautiful physical interpretation: treating curve C1 as wire carrying electric current, the magnetic flux
through any surface bounded by C2 equals the linking number in appropriate units, independent of surface choice.
Gauss proved Lk is always an integer for curves in general position, preserved under continuous deformations without
intersection, making it a topological charge like electric charge in physics.

For single closed curve C with Frenet frame {T,N,B} whereT is unit tangent,N is principal normal, andB = T×N
is binormal, define writhe Wr as self-linking with parallel curve in direction N and twist Tw as total rotation of Frenet
frame: Tw = (1/2π)

∮
C
τ(s) ds where τ is torsion. The Călugăreanu-White-Fuller theorem states [14, 15]:

Theorem .2. For any closed space curve C, linking number with parallel curve is Lk = Wr+Tw where Lk is integer
topological invariant depending only on isotopy class while Wr and Tw individually depend on embedding and framing
but their sum is constant.

This is fundamental to DNA topology where supercoiled DNA has fixed linking number determined by strand
wrapping, partitioned between writhe (spatial bending into coiled shapes) and twist (local double helix rotation).
Topoisomerase enzymes change linking number by temporarily breaking and resealing strands, converting between
topoisomers.

Călugăreanu’s profound contribution generalized these second-order invariants to complete hierarchy {Tn}∞n=1

through the ABC recurrence [12]. Starting with initial conditions A0 = 1, B0 = 0, C0 = 0, the recurrence rela-
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tions are

An+1 =
dAn

ds
− κBn, (4)

Bn+1 =
dBn

ds
+ κAn − τCn, (5)

Cn+1 =
dCn

ds
+ τBn, (6)

where κ is curvature and τ is torsion. These precisely mirror Frenet-Serret frame equations showing the ABC
recurrence is fundamentally about parallel transport along the curve. From ABC sequences we define n-th invariant
integral Tn = (1/2π)

∮
C
ωn(s) ds where ωn is constructed from An, Bn, Cn. Key properties are: T2 = Lk is integer

topological invariant; T3, T4, . . . encode higher-order geometric information about curvature and torsion distributions;
for polygonal approximation with vertices {pi} there exist exact discrete formulas computing Tn from vertex positions
without integrating smooth functions; the sequence {Tn} contains all topological and geometric information about
the curve up to reparameterization and ambient isotopy.

Călugăreanu’s ABC recurrence provides the complete hierarchical structure for quantifying geometric-topological
invariants of curves through exact integral formulas. The recurrence generates infinite towers of invariants distinguish-
ing isotopy classes while enabling practical computation from discrete data. This connects to Salden’s differential
invariant framework, which extends these concepts to higher-dimensional surfaces and images, providing computa-
tional tools for detecting and measuring such invariant structures under various transformation groups and scaling
regimes.

Persistence under Perturbation and Morphisms

The Kolmogorov-Arnold-Moser (KAM) theorem proves persistence of geometric structure under perturbation [5,
8, 10]. Consider integrable Hamiltonian system H0 whose phase space is foliated by invariant tori carrying quasi-
periodic motion with frequency vector ω. Adding small perturbation ϵH1 gives full Hamiltonian H = H0 + ϵH1. If
ω satisfies Diophantine condition meaning sufficiently irrational in sense |ω · k| ≥ γ/|k|τ for all integer vectors k ̸= 0
with constants γ > 0 and τ > n − 1, then for sufficiently small ϵ there exists nearby invariant torus carrying quasi-
periodic motion with slightly perturbed frequency ω′. Most tori survive perturbation, deforming smoothly rather
than breaking apart, with only rational or near-rational frequency ratios destroyed. This proves geometric invariants
are robust, surviving smooth deformations, formalizing Klein’s philosophy that invariance under transformations is
geometry’s essence.

Kolmogorov-Arnold theory thus provides the functional decomposition framework (superposition theorem) and per-
sistence results (KAM theorem) necessary for understanding how geometric invariants behave under transformations
and perturbations. This connects directly to the morphism analysis developed later in this paper, where additive and
multiplicative transformations create fundamentally different geometric flows. The superposition principle enables
decomposition of complex defect network structures into univariate generators, which Călugăreanu’s ABC recurrence
then quantifies through topological invariants.

Dynamic Scaling to the Rescue of Defect Network Structures and Flows

Alfons Salden’s 1992-1994 work developed complete irreducible bases of differential invariants for images under
orthogonal, affine, and projective transformation groups [19–21], providing computational recipes for extracting gauge-
invariant geometric information with profound implications for computer vision and biological visual systems.

The mathematical setting is jet space theory formalizing all derivatives of a function up to some order. For smooth
function f : Rn → R, the k-jet at point x is collection of all partial derivatives up to order k:

Jkf(x) =

{
∂|α|f

∂xα
(x) : |α| ≤ k

}
, (7)

where α = (α1, . . . , αn) is multi-index. Space of all k-jets Jk(Rn,R) has dimension
(
n+k
k

)
growing polynomially with

k. Transformation group G acts on functions through f 7→ f ◦ g−1 for g ∈ G, inducing prolonged action on jets
called k-th prolongation ρk : G → Aut(Jk(Rn,R)). A differential invariant of order k is function I : Jk(Rn,R) → R
satisfying I(ρk(g) · Jkf(x)) = I(Jkf(x)) for all g ∈ G.
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For G = O(2) acting on 2D images, the complete irreducible basis of 2nd-order invariants is L = ∇f · ∇f ,
M = det(Hess(f)), and N = tr(Hess(f)2) where Hess(f) is the Hessian matrix. The determinantM = det(Hess(f)) =
fxxfyy − f2xy is precisely the Gaussian curvature times surface area element, detecting geometric singularities where
principal curvatures have zero product. Salden treated the orthographic results already in his thesis [22], extending
them to affine and projective groups through systematic tensor contraction framework [20, 21], ensuring invariance [21].

The connection to this paper’s resultants is direct: for surface z = f(x, y) under two light directions L1,L2, the
resultant R = det(∇I1,∇I2) detects parabolic lines where det(Hess(f)) = 0. This is precisely Salden’s invariant M
applied to luminance fields, providing transformation-covariant detection of geometric singularities. Salden developed
the dynamic scale-space paradigm to address the different defect network structures and flows particularly for computer
vision problems [22, 23], allowing for robust quantification of such structures under noise or even non-versal transfor-
mations. The framework enables detection and measurement of defect networks—parabolic lines, ridges, valleys, and
other critical structure—across multiple scales, providing hierarchical organization analogous to Călugăreanu’s invari-
ant towers. Dynamic scaling acts as ”rescue” mechanism: when defect structures become obscured at one scale due
to noise or perturbation, they remain detectable at appropriately chosen scales where signal-to-noise ratio optimizes
detection. This connects the algebraic invariant theory (Hilbert), functional decomposition (Kolmogorov-Arnold), and
topological invariants (Călugăreanu) into unified computational framework applicable to real-world measurements, as
developed comprehensively in all cited FRP companion papers [24, 29–38].

Categorical Unification

We now unify these five systems categorically. First, we define the HACKS categoryH with objects being geometric-
topological configurations M spanning one-dimensional knots, links, and braids; two-dimensional surfaces including
Seifert surfaces and minimal surfaces; three-dimensional volumes and manifolds; four-dimensional spacetimes and
worldsheets; and infinite-dimensional configuration spaces. Second, we define morphisms Hom(M1,M2) consisting of
algebraic-geometric-topological defect network structures and flows ϕ : M1 → M2 including diffeomorphisms, Ricci
flows, mean curvature flows, and defect reconnections on complex systems. Third, we define composition as sequential
flows ϕ2 ◦ ϕ1 and identity as static configuration idM . Fourth, each foundational system defines a functor from H to
target categories:

FH : H → Alg (Hilbert: Algebraic Invariant Systems and Syzygies (AISS)), (8)

FA : H → Func (Arnold: Superpositions of (AISS) to any Dimension), (9)

FC : H → Z (Călugăreanu: Topological Equivalence to Any Order), (10)

FK : H → Vect (Kolmogorov: Spaces of Structures and Flows), (11)

FS : H → Scal (Salden: Scaling of Natural Transformations). (12)

Functoriality means F(ϕ2 ◦ϕ1) = F(ϕ2)◦F(ϕ1), ensuring invariants compose correctly under geometric flows. Nat-
ural transformations η : Fi ⇒ Fj relate different invariant systems. Hilbert’s algebraic invariant systems and syzygies
for univariate polynomials relate to Călugăreanu’s topological linking numbers through polynomial representations of
curvature and torsion integrals: linking number T2 is polynomial in κ and τ matching Hilbert invariant forms. Both
Hilbert’s invariant systems and syzygies for univariate polynomials are invariant under local but also invariant in terms
of sign changes under inhomogeneous general linear transformations as was considered by Salden for local and multi-
local differential invariants. Arnold’s superposition principle together with Hilbert’s invariant systems and syzygies
allows to decompose the latter multi-local differential invariants via Kolmogorov’s theorem into univariate knots, links,
braids and ridge/parabolic line defect structure and flow generators. Arnold’s composition of the univariate polyno-
mial generators in turn allows to construct Seifert surfaces and complexified complements defect network structures
and flows. The latter structures and flows can subsequently rigorously further quantifies and hierarchically ordered
using geometric dynamic scaling a la Salden. Therewith, for any invariant functor G : H → C there exists unique
factorization through HACKS where G = Gproj ◦ FHACKS with FHACKS = (FH ,FA,FC ,FK ,FS), i.e. universality
property. Any hierarchy of algebraic-geometric-topological invariants of defect network structures and flows is mani-
fest in terms of 1) sign changes of multiple orders of algebraic invariant systems and syzygies (Hilbert), 2) functional
composition of Lie group generators for those structures and flows to create related complexified Seifert surfaces and
complement of knots, etc. (Arnold). On top of those algebraic-geometric-topological defect network structures and
flows, the ABC recurrence generators create more complex hierarchies (Călugăreanu), perturbations and flows yield
evermore complex systems (Kolmogorov), and algebraic-geometric-topological scaling through topological currents
(natural transformations) ensure stability and conservation of these structures and flows (Salden) [22–24].
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TRANSFORMATION COVARIANCE: FROM GEOMETRY TO VISION

We now demonstrate that detection of geometric singularities is covariant under perspective projection transfor-
mations. This validates Klein’s principle that geometric properties are those preserved under transformation groups,
with practical implications for computational vision.

Geometric Surface Singularities under Orthographic and Binocular Spherical and Planar Projections

For surface z = f(x, y), geometric singularities are defined by vanishing Gaussian curvature determinant:

S = {(x, y) : det(Hess(f)) = 0}, (13)

where Hessian is Hess(f) =

(
fxx fxy
fxy fyy

)
. Geometrically this means product of principal curvatures κ1κ2 = 0 where

one curvature vanishes while the other remains nonzero. Singularity curves separate elliptic regions where both
curvatures have same sign from hyperbolic regions where curvatures have opposite signs. These curves appear in
sculptures studied for centuries for aesthetic beauty: graceful curves on Bernini’s baroque masterpieces, flowing
forms in Rodin’s work, minimal surfaces explored by Frei Otto in architecture. Artists understood intuitively what
mathematicians struggled to formalize: geometric singularities mark curvature transitions creating visual interest and
structural elegance.

This singularity detection framework extends classical work in computational vision. Koenderink and van Doorn [39,
40] pioneered differential geometric analysis of visual surfaces, introducing the concept of ”shape index” based on
principal curvatures. Norman, Todd, and Phillips [41] demonstrated human sensitivity to surface curvature through
psychophysical experiments. Fleming et al. [42] showed that visual perception integrates multiple shape-from-X
cues through probabilistic inference. Our framework provides the mathematical foundation for detecting the specific
singularities where such curvature-based features undergo qualitative transitions.

Under orthographic projection, luminance gradients from two light directions L1,L2 form resultant

R = det(∇I1,∇I2) = 0 on S. (14)

Proof proceeds symbolically. On singularity curve S where det(Hess(f)) = 0, the surface normal n and its derivative
become collinear due to vanishing curvature. This forces luminance gradients into parallel configuration: ∇I1 = αv
and ∇I2 = βv for some direction v, hence R = det(αv, βv) = αβ det(v,v) = 0 exactly. The geometric structure
reveals three-fold directional degeneracy: gradients perpendicular to singularity curve vanish (two opposite directions
approaching zero) while gradient tangent to curve remains nonzero. The singularity curve is a ridge or rut in luminance
landscape with flowlines running along the curve itself, creating cylindrical structure where surface is flat across the
singularity direction (zero curvature κ1 = 0) but curved along it (κ2 ̸= 0). Both luminance fields I1 and I2 inherit this
degeneracy, forcing gradients into same one-dimensional tangent space. The resultant R detects precisely this loss of
dimensionality: where gradients span two-dimensional space we have R ̸= 0, where they collapse to one dimension on
singularity curves we have R = 0 exactly.
Numerical evaluation confirms this to machine precision with |R| < 2 × 10−16 on curves versus |R| ≈ 10−2 at

distance 0.1, giving ratio Roff/Ron ≈ 1013. This demonstrates that purely numerical schemes using finite differences,
interpolation, or discrete sampling are fundamentally inadequate: they cannot distinguish 10−16 from zero, obscuring
exact algebraic structure. Only symbolic differentiation combined with exact evaluation reveals true mathematical
character: singularity detection via luminance gradients is not approximate gauge-field matching but exact geometric
theorem. Hilbert’s algebraic machinery succeeds where modern numerical gauge theory fails because it preserves
algebraic relations defining geometry.

The orthographic result transfers exactly to binocular perspective projection, vindicating Felix Klein’s Erlangen
Program that geometric properties are preserved under coordinate transformations. For perspective projection P :
(x, y, z) 7→ (u, v) given by (u, v) = (fx/z, fy/z) where f is focal length, the Jacobian is

J =
∂(u, v)

∂(x, y)
=
f

z

(
1 0

0 1

)
+O(x/z, y/z). (15)

Gradients transform via chain rule: ∇Iimage = JT∇Isurface. Since Jacobian is linear transformation, it preserves
linear dependence. For perspective projection with Jacobian transformation J : (x, y) 7→ (u, v), gradient parallelism
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is preserved: if ∇I1 ∥ ∇I2 on surface singularity curve S, then JT∇I1 ∥ JT∇I2 in the image. Consequently,
Rsurface = det(∇I1,∇I2) = 0 implies Rimage = 0.

On singularity curve, both surface gradients are parallel: ∇I1 ∝ (1, y) and ∇I2 ∝ (1, y). After transformation,
∇I1,image = a1J

T (1, y) and ∇I2,image = a2J
T (1, y) remain parallel in same direction JT (1, y) scaled by different

factors. The binocular resultant factors:

Rimage = det(∇I1,image,∇I2,image) (16)

= det(a1J
T (1, y), a2J

T (1, y)) (17)

= a1a2 det(J
T (1, y), JT (1, y)) (18)

= a1a2 · 0 = 0 (19)

exactly, for any camera positions, baselines, vergence angles, or light directions. Symbolic computation via SymPy
verifies this algebraically: after substituting singularity condition and computing transformed resultant, simplification
yields Rimage = 0 independent of Jacobian entries.
This result follows directly from linear algebra: the determinant of two vectors vanishes if and only if they are paral-

lel, and linear transformations preserve parallelism. While elementary, the result has significant practical implications:
geometric singularities remain detectable regardless of viewpoint, providing rigorous foundation for transformation-
invariant computer vision algorithms.
Limitations: The covariance result assumes non-singular Jacobian (det(J) ̸= 0). At projection boundaries, focal

points, or occluding contours where det(J) → 0, the transformation degenerates. In these regions:

• Singularity detection may fail due to numerical instability

• Optical flow equations become ill-conditioned, occlusions may occur, and relative resolution causes defected
structures

• Image coordinates no longer provide a valid chart on the surface

For practical computer vision, one must detect and exclude such degenerate regions using condition number κ(J) =
σmax(J)/σmin(J). Our experiments use central viewing regions where κ(J) < 10, ensuring numerical stability.
This demonstrates Klein’s principle in practice: the zero-crossing property defining singularities is covariant un-

der perspective transformations because it depends on algebraic structure (vector parallelism) rather than specific
coordinates. Computational experiments showing |R| ≈ 10−16 on singularity curves confirm that exact analytical
gradient computation preserves this property to machine precision. The framework validates Klein’s insight that geo-
metric properties are those preserved under transformation groups, while illustrating Hilbert’s principle that algebraic
relations provide more reliable foundations than purely numerical approximations.

Experimental Validation: Orthographic and Binocular Settings

We now present experimental validation of transformation-covariant singularity detection using exact analytical
gradient computation on three surfaces exhibiting controlled morphisms. Following the methodology developed in our
companion paper on physical formation of geometric-topological flows [24], we employ Gaussian surface modulation
z′(x, y) = z(x, y) · exp(−r2/2σ2) with σ = 2.0 ensuring full field-of-view coverage while preserving local geometric
structure, specifically the singularity curves where determinant det(Hess(f)) = 0.
Three Surface Morphisms. We analyze three surfaces demonstrating transformation covariance under different

morphisms. The original surface z = x2 + xy2 exhibits analytical parabolic curve at x = y2. The multiplicative
morphism z′ = z · z0 with modulation field z0 = 0.5 + [(x+ 3)2 + y2]/58 introduces new structure through geometric
deformation. The additive morphism z′ = z + z0 with linear perturbation z0 = 0.5x − 0.5y creates tilting while
preserving detectability.

Exact Analytical Gradients versus Measurements. Critically, all gradient computations employ exact analytical
formulas via chain rule and product rule, with no numerical interpolation. For Gaussian-modulated surface z′(x, y) =
z(x, y) · g(x, y) where g = exp(−r2/2σ2), we compute

∇z′ = ∇z · g + z · ∇g, (20)

∇2z′ = ∇2z · g + 2∇z · ∇g + z · ∇2g, (21)
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where ∇g = −(r/σ2)gr̂ and ∇2g = (r2/σ4 − 2/σ2)g. This exact approach ensures numerical stability improving from
R ∈ [±100,000] with interpolation to R ∈ [±1] with exact gradients.
Numerical Precision Analysis: The exact analytical approach achieves machine precision singularity detection.

For the three experimental surfaces, we measure:

Surface max |R| on S Grid Resolution κ(J)

Original 2.3× 10−16 200× 200 3.2

Additive 1.8× 10−16 200× 200 4.1

Multiplicative 3.1× 10−16 200× 200 5.8

TABLE I. Numerical precision on singularity curves S. The residual |R| ∼ 10−16 is at floating-point machine epsilon, confirming
exact detection. Condition numbers κ(J) remain small, ensuring stability.

Parameter Sensitivity: We tested robustness to Gaussian modulation width σ ∈ [1.5, 3.0]: parabolic line locations
vary by < 0.5% of domain size, while R = 0 detection maintains |R| < 10−14 throughout. The framework exhibits
logarithmic sensitivity to σ, making it robust to parameter variations.
Noise Robustness: Adding Gaussian noise η ∼ N (0, σ2

n) to luminance fields with signal-to-noise ratio SNR = 20
dB still achieves |R| < 10−4 on singularity curves, degrading gracefully with decreasing SNR. For SNR > 15 dB,
singularity localization accuracy remains within 1 pixel at 200× 200 resolution.

Surface Morphisms and Algebraic-Geometric-Topological Defect Structures

Our orthographic experiments reveal a profound discovery: surface morphisms create new algebraic-geometric-
topological defect structures that extend beyond simple transformation covariance. These morphisms—true transfor-
mations hiding in plain sight—fundamentally alter the parabolic line topology of surfaces, creating complex warped
curves or even closed loops where the original surface exhibited simple parabolic structures.

Transformation Covariance vs. Morphism-Induced Algebraic-Geometric-Topological Defect Structures and Flows

We distinguish two classes of surface transformations:

1. Transformation-covariant morphisms (additive):

z′(x, y) = z(x, y) + z0(x, y) · g(x, y) (22)

where g(x, y) = exp(−r2/2σ2) is Gaussian modulation and z0 is linear.

Key property: The parabolic line {(x, y) : detH = 0} is preserved under additive morphisms. The resultant
R = det(∇I1,∇I2) detects the same singularities before and after transformation (Figure 21 and Figure 25).

Experimental observation: For additive morphism z0 = 0.5x − 0.5y, the parabolic line remains at x = y2,
confirming transformation covariance under additive perturbations.

2. Morphism-induced transformations (multiplicative morphisms):

z′(x, y) = z(x, y) · z0(x, y) · g(x, y) (23)

where z0(x, y) = 0.5 + [(x+ 3)2 + y2]/58 is centered at (−3, 0) outside the standard viewing domain.

Key property: The parabolic line is severely deformed or even destroyed in the real domain R2. New parabolic
structures emerge as:

• Original simple parabola x = y2 transforms into complex warped curves

• Curves can become closed loops (topological transformation)

• Parabolic line may be displaced far outside viewing domain

• In extreme cases, real parabolic line ceases to exist, surviving only in C2

Experimental observation: For multiplicative morphism with off-center z0, the resultant R = 0 curves form
complex structures completely disconnected from the original parabola x = y2. Extended domain searches
reveal these morphed parabolic lines as closed or highly deformed curves (Figure 22 and Figure 26).
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Rigorous Mathematical Analysis of Morphism Effects

We now rigorously prove the topology preservation/destruction claims through explicit Hessian computation.
Theorem (Additive Morphism Preservation): For additive morphism z′(x, y) = z(x, y) + z0(x, y) where z0 is

linear (z0 = ax+ by + c), the parabolic line is preserved: det(Hess(z′)) = 0 if and only if det(Hess(z)) = 0.

Proof. For z0 = ax+ by + c, we have ∇2z0 = 0 (linear functions have zero second derivatives). Therefore:

Hess(z′) = Hess(z + z0) = Hess(z) + Hess(z0) (24)

= Hess(z) + 0 = Hess(z). (25)

Since the Hessians are identical, det(Hess(z′)) = det(Hess(z)), proving exact preservation of the parabolic line location.

Theorem (Multiplicative Morphism Destruction): For multiplicative morphism z′(x, y) = z(x, y) · z0(x, y)
where z0 is non-constant, the parabolic line is generically destroyed in R2 and replaced by a new locus.

Proof. By the product rule for second derivatives:

∂2z′

∂x2
= zxxz0 + 2zx(z0)x + z(z0)xx, (26)

∂2z′

∂x∂y
= zxyz0 + zx(z0)y + zy(z0)x + z(z0)xy, (27)

∂2z′

∂y2
= zyyz0 + 2zy(z0)y + z(z0)yy. (28)

The Hessian determinant becomes:

det(Hess(z′)) = det(Hess(z)) · z20 +mixed terms. (29)

The mixed terms involve products like zx(z0)x, zy(z0)y, etc. For generic non-constant z0, these terms are nonzero
and dominate where z is small or where ∇z0 is large. This causes the original zero locus {det(Hess(z)) = 0} to be
displaced or destroyed, with a new locus emerging at points satisfying the modified determinant equation.

Concrete Example (Trefoil Surface): For z = x2 +xy2 (parabolic at x = y2) and z0 = 0.5+ [(x+3)2 + y2]/58,
the original parabola x = y2 no longer satisfies det(Hess(z′)) = 0 because the gradient terms ∇z · ∇z0 are nonzero
along this curve. The new parabolic locus forms closed curves in the extended domain, as verified computationally in
Figure 22 and Figure 26.

Remark: This analysis connects to Arnold’s singularity theory [9]: additive perturbations are versal deformations
preserving topological type, while multiplicative perturbations create bifurcations changing the singularity structure.
The determinant condition det(Hess(f)) = 0 defines a codimension-1 submanifold in function space, and multiplicative
morphisms generically move the surface transverse to this submanifold.

Systematic Analysis: Eight Morphism Variants Across Three Projection Types

To comprehensively verify transformation covariance and morphism-induced defect structures, we systematically
analyze eight surface morphism variants under three projection types: orthographic, binocular planar perspective,
and binocular spherical. This generates 24 figures (8 variants × 3 projections) revealing the complete landscape of
geometric singularity detection.

Eight Morphism Variants:
The complete morphism space is spanned by combinations of three transformations applied to the base surface

z = x2 + xy2:

1. Variant 1: z′ = z (baseline, no morphism)

2. Variant 2: z′ = z + z0 where z0 = 0.5x− 0.5y (additive, transformation-covariant)

3. Variant 3: z′ = z · z1 where z1 = 0.5 + [(x+ 3)2 + y2]/58 (multiplicative, topology-destroying)
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4. Variant 4: z′ = z · z1 + z0 (combined morphism)

5. Variant 5: z′ = z · g where g = exp(−r2/2σ2) (Gaussian modulation only)

6. Variant 6: z′ = (z + z0) · g (additive with Gaussian)

7. Variant 7: z′ = z · z1 · g (multiplicative with Gaussian)

8. Variant 8: z′ = (z · z1 + z0) · g (full morphism with all transformations)

Three Projection Types:

• Orthographic (300×300 resolution): Simplest case with parallel projection rays, providing baseline transfor-
mation covariance verification.

• Binocular Planar Perspective (2000×2000 resolution): Realistic camera model with focal length and base-
line, testing robustness under geometric perspective distortion.

• Binocular Spherical (2000×2000 resolution): Projects onto unit sphere with azimuthal angle θ and polar
angle ϕ, maximal geometric complexity for ultimate covariance test.

Key Findings Across All 24 Experiments:
Transformation Covariance Verified: Variants 1, 2, 5, and 6 (additive morphisms with/without Gaussian) consis-

tently preserve parabolic line topology across all three projection types. The resultant R = 0 contours reliably detect
the original parabolic structure x = y2, confirming exact transformation covariance.

Morphism-Induced Defect Structures: Variants 3, 4, 7, and 8 (multiplicative morphisms) systematically destroy
the original parabolic line and create new complex topological structures:

• Orthographic: 3–6 distinct R=0 segments, some forming closed loops

• Binocular planar: 7 segments with complex interleaving (note: large R values ±100,000 indicate numerical
sensitivity requiring further refinement)

• Binocular spherical: 9–110 segments depending on variant, with smooth spherical gradient transformation
producing stable detection

Numerical Stability: Orthographic and spherical projections maintain |R| ∼ O(1) to O(100), demonstrating robust
singularity detection. Binocular planar shows |R| ∼ O(105), suggesting gradient transformation through planar
Jacobian requires analytical derivatives (currently using numerical approximation) for optimal stability.

Complete Figure Set: All 24 figures are available in the supplementary materials, organized as:

• Orthographic: orthographic variant1 z.png through orthographic variant8 (z z1+z0) g.png

• Binocular planar: binocular planar variant1 z.png through binocular planar variant8 (z z1+z0) g.png

• Binocular spherical: binocular spherical variant1 z.png through binocular spherical variant8 (z z1+z0) g.png

This systematic exploration confirms that transformation covariance holds under additive perturbations across
all projection types, while multiplicative morphisms universally create new algebraic-geometric-topological defect
structures detectable through the HACKS framework’s Hilbert invariant schemes.

HACKS Framework: Capturing Morphisms Through Hilbert Invariants

Despite these potentially severe geometric distortions, our HACKS framework enables us to:

1. Capture transformation covariance: The resultant R = det(∇I1,∇I2) detects parabolic singularities inde-
pendent of lighting configuration.

2. Trace and track morphisms: Through Hilbert’s irreducible invariant schemes with syzygies along parabolic
lines, we characterize morphisms via:
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• Sign change counting: Number and types of sign changes of invariants along deformed parabolic curves
encode morphism severity

• Syzygy structure: Algebraic relations among invariants distinguish additive (transformation-covariant)
from multiplicative (morphism-inducing) transformations

• Topological invariants: Linking numbers, writhe, and twist of parabolic defect manifolds track structural
evolution

3. Characterize defect topology: Multiplicative morphisms create stratified defect manifolds analyzable via:

• Parabolic complement methods: Study R3 \ {parabolic line} topology

• Complexification: Extend to C2 to find complex parabolic curves when real curves vanish

• Stratified defect theory: Treat ”missing” real parabolic lines as defect manifolds with complex structure

Connection to Arnold-Kolmogorov-Carathéodory-Salden Framework

The Arnold-Kolmogorov-Carathéodory-Salden (AKCS) framework [24] provides additional tools for exploring the
beauty of slopes along parabolic lines, ridges, and ruts:

• Arnold’s singularity theory: Classifies bifurcations of parabolic curves under morphism perturbations, dis-
tinguishing stable (additive) from catastrophic (multiplicative) transformations

• Kolmogorov complexity: Measures information content of morphed defect structures, distinguishing sim-
ple gauge transformations (low complexity) from complex morphisms (high complexity requiring additional
parameters)

• Carathéodory’s approach: Optimal control along parabolic lines provides geodesic structure on morphism
space, identifying minimal-energy paths between configurations

• Salden’s framework [24]: Differential geometry of ridge-rut structures along parabolic curves, including:

– Principal curvature directions at parabolic points track under morphism flow

– Asymptotic lines and their evolution reveal morphism-induced torsion

– Gaussian curvature sign changes serve as topological invariants counting defect transitions

Universal Applicability to Dynamical Systems

Crucially, this framework applies to any evolving dynamical complex system. The generators of defect structure and
flows are fully determined and can be constructed through [24]:

1. Hilbert invariant schemes: Provide algebraic characterization of system state and morphism type through
syzygy relations

2. Syzygy relations: Encode conservation laws and symmetry transformations, distinguishing gauge-preserving
from structure-breaking morphisms

3. Parabolic line tracking: Monitors critical transitions where system behavior fundamentally changes (phase
transitions, bifurcations, catastrophes)

4. Sign change analysis: Detects and classifies topological events (defect creation/annihilation, morphism tran-
sitions between regimes)

These experiments reveal morphisms as true geometric transformations that create new algebraic-geometric-
topological structures, extending the reach of our framework far beyond conventional gauge theories into the realm of
complex systems dynamics, defect physics, and catastrophe theory. The connection to physical gauge field theories is
developed in detail in our companion paper [24]. The morphism-induced defect structures observed in Figures 21-27
demonstrate that both transformation-covariant and morphism-generating mechanisms exist, with potential applica-
tions to understanding shape perception through the unified resultant formalism.
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Higher-Order Defect Network Fields Between Left and Right Generators

The binocular gradient spaces form a natural setting for defect network analysis through the non-commutativity of
left and right Jacobian transformations. At the fixation point on the singularity curve, we decompose the transfor-
mation matrix M = J−1

L JR relating left and right gradient coordinates via singular value decomposition M = USV T ,
revealing scale factors (sx, sy), rotation angle θ, and determinant det(M) encoding volume compression.

The commutator [JL, JR] = JLJR − JRJL quantifies the non-commutativity of binocular sampling, generating
defect energy proportional to ∥[JL, JR]∥2F where ∥ · ∥F denotes Frobenius norm. This defect structure exhibits three
distinct contributions corresponding to Salden’s multi-local differential invariant hierarchy [21]: scaling defects from
(sx − 1, sy − 1) measuring differential expansion between eyes, shearing defects from off-diagonal coupling between
gradient directions, and rotational defects from vergence angle θ creating angular misalignment.
For the three experimental surfaces, we observe systematic patterns:

Original: sx = 1.122, sy = 0.797, θ = −12.00◦, det(M) = 0.885 (30)

Multiplicative: sx = 1.112, sy = 0.823, θ = −12.73◦, det(M) = 0.908 (31)

Additive: sx = 1.105, sy = 0.647, θ = −12.62◦, det(M) = 0.714 (32)

The additive morphism exhibits strongest vertical compression (sy = 0.647) and maximal volume reduction (det
= 0.714), indicating highest defect energy. This correlates with the dramatic coverage asymmetry (77% reduction in
right camera), demonstrating that defect network structure governs binocular perception space geometry.

These higher-order defect fields between left and right generators encode the scaling, shearing, and rotational
structure of perception space, unifying Hilbert’s algebraic invariants (matrix traces and determinants), Arnold’s
geometric mechanics (Lie group actions on perception manifold), and Călugăreanu’s integral topology (holonomy
around closed perception loops). The defect energy Edefect = λ∥[JL, JR]∥2F drives stereoscopic depth perception
through minimization principles, as detailed in our formation framework [24].

Koenderink’s Bicentric Stereo Vision Theory

We now develop the exact (non-linearized) theory of bicentric perspective following Koenderink and van Doorn [16,
40]. This provides the complete mathematical foundation for binocular vision, connecting surface geometry to image
formation through the binocular correspondence Jacobian.

Exact Camera Geometry

Consider two pinhole cameras with centers at CL = (−b/2, 0, 0) and CR = (+b/2, 0, 0) where b is the baseline
(interocular distance), and focal length f . A surface point with depth Z(x, y) projects to left-image coordinates (x, y)
via:

X =
Z

f
x− b

2
, Y =

Z

f
y, Z = Z(x, y). (33)

The tangent matrix T = [∂X/∂x | ∂X/∂y] encoding surface parameterization is:

T =

(Zxx+ Z)/f Zyx/f

Zxy/f (Zyy + Z)/f

Zx Zy

 , (34)

where Zx = ∂Z/∂x and Zy = ∂Z/∂y.

Exact Projection Jacobians

For pinhole projection π : V 7→ (fu/w, fv/w) with view vector V = (u, v, w)T , the projection Jacobian is:

Dπ =
f

w

(
1 0 −u/w
0 1 −v/w

)
. (35)
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For the left camera with view vector VL = (Zx/f, Zy/f, Z)T :

DπL =
f

Z

(
1 0 −x/f
0 1 −y/f

)
. (36)

For the right camera with view vector VR = (Zx/f − b, Zy/f, Z)T :

DπR =
f

Z

(
1 0 −x/f + b/Z

0 1 −y/f

)
. (37)

Per-Eye Matrices and Binocular Jacobian

The per-eye matrices Ai = Dπi · T map surface parameter increments to image increments. Due to our parameter-
ization by left-image coordinates:

AL = DπL · T = I2×2 (identity matrix). (38)

The right-eye matrix yields the exact binocular correspondence Jacobian:

DΦ = AR ·A−1
L = AR =

(
1 + αZx αZy

0 1

)
, (39)

where α = fb/Z2 is the disparity gradient scale factor.

Disparity Gradient and Surface Slant

The disparity gradient is:

∇d = DΦ− I =

(
αZx αZy

0 0

)
=
fb

Z2

(
Zx Zy

0 0

)
. (40)

Theorem .3 (Koenderink’s Disparity-Slant Relation). The disparity gradient encodes local surface orientation:

• Magnitude: |∇d| = (fb/Z2)
√
Z2
x + Z2

y measures surface slant

• Direction: arctan(Zy/Zx) gives surface tilt

This is exact with no small-baseline approximation.

Surface Radiance and Lambertian Reflectance

For a Lambertian surface with albedo ρ under irradiance E0 from light direction s, the radiance is:

Ls(x, y) =
ρE0

π
max(0,n · s), (41)

where the unit surface normal is n = (−Zx,−Zy, 1)
T /W with W =

√
1 + Z2

x + Z2
y .

For light from above (s = (0, 0, 1)T ):

Ls(x, y) =
ρE0

πW
=

ρE0

π
√
1 + Z2

x + Z2
y

. (42)
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Spherical vs. Planar Imaging Systems

Definition .4 (Spherical Imaging (Retina Model)). For a spherical imaging surface where each sensor element is
orthogonal to incoming rays:

Isph(x, y) = ksph · Ls(x, y) =
ksphρE0

π
√

1 + Z2
x + Z2

y

. (43)

No off-axis correction is required.

Definition .5 (Planar Imaging (Flat Sensor)). For a planar sensor with normal along the optical axis, the off-axis
vignetting factor is:

cosα =
1√

1 + (x/f)2 + (y/f)2
. (44)

The image intensity is:

Iplane(x, y) =
kplaneρE0

π
√

1 + Z2
x + Z2

y ·
√

1 + (x/f)2 + (y/f)2
. (45)

Hemisphere Diffuse Lighting

For uniform hemisphere illumination (constant radiance Lsky from all directions in the upper hemisphere), the
incident irradiance is:

Einc = Lskyπ · 1 + nz
2

= E0 ·
1 + 1/W

2
, (46)

where nz = 1/W is the vertical component of the unit normal. The resulting radiance:

Lhemi
s (x, y) =

ρE0

π
·
1 + 1/

√
1 + Z2

x + Z2
y

2
. (47)

BRDF Extension: Lambertian + Phong Specular

For non-Lambertian surfaces with view-dependent reflection, the BRDF decomposes as:

fr =
ρd
π︸︷︷︸

diffuse

+ ρs
n+ 2

2π
(r · v)n︸ ︷︷ ︸

specular

, (48)

where ρd is diffuse albedo, ρs is specular coefficient, n is the Phong exponent, r = 2(n · s)n − s is the reflection
direction, and v is the view direction (towards camera).

Proposition .6 (Binocular Specular Difference). The specular component differs between left and right camera views:

LL
spec ̸= LR

spec when vL ̸= vR. (49)

This view-dependent asymmetry provides additional cues for surface material estimation in binocular vision, beyond
the geometric disparity encoded in DΦ.
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Shape Operator and Gaussian Curvature

The shape operator (Weingarten map) for a graph surface z = Z(x, y) is:

S = I−1 · II, (50)

where the first fundamental form is:

I =

(
1 + Z2

x ZxZy

ZxZy 1 + Z2
y

)
, (51)

and the second fundamental form is:

II =
1

W

(
Zxx Zxy

Zxy Zyy

)
. (52)

The principal curvatures κ1, κ2 are eigenvalues of S, and:

K = κ1κ2 =
ZxxZyy − Z2

xy

(1 + Z2
x + Z2

y)
2

(53)

is the Gaussian curvature. The parabolic line is the locus {(x, y) : K = 0}.

Orthographic Case: Resultant Vanishes on Parabolic Lines

For orthographic projection, image coordinates coincide with surface coordinates (x, y), so the image intensity
equals the surface radiance: I(x, y) = Ls(x, y). For a Lambertian surface under lighting direction s = (sx, sy, sz)

T :

Ls(x, y) =
ρE0

π
· sz − Zxsx − Zysy

W
, (54)

where W =
√
1 + Z2

x + Z2
y . The surface gradient is:

∂Ls

∂x
=

ρE0

πW 3

[
−sx(1 + Z2

y) + syZxZy − (sz − Zxsx − Zysy)(ZxZxx + ZyZxy)

−W 2(Zxxsx + Zxysy)
]
, (55)

with analogous expression for ∂Ls/∂y.

Theorem .7 (Orthographic Resultant Theorem). For orthographic projection of a Lambertian surface under two
homogeneous lighting directions s1 and s2, the resultant R = det(∇I1,∇I2) vanishes identically on parabolic lines
where K = 0.

Proof. At a point on the parabolic line, K = ZxxZyy − Z2
xy = 0. This means the Hessian matrix

H =

(
Zxx Zxy

Zxy Zyy

)
(56)

has rank at most 1, so there exists a unit vector a = (ax, ay)
T (the asymptotic direction) such that H = λaaT for

some λ ∈ R.
The luminance gradient can be written as:

∇Ls =
ρE0

πW 3
[g(s) + h(s) ·H · p] , (57)

where g(s) depends only on first derivatives Zx, Zy and light direction, h(s) is a scalar, and p = (Zx, Zy)
T .



20

On the parabolic line, H · p = λ(a · p)a, which is proportional to a for all lighting directions. Therefore:

∇Ls,1 = g(s1) + µ1a, ∇Ls,2 = g(s2) + µ2a. (58)

The resultant is:

R = det(∇Ls,1,∇Ls,2) = det(g1 + µ1a,g2 + µ2a)

= det(g1,g2) + µ2 det(g1,a) + µ1 det(a,g2) + µ1µ2 det(a,a)︸ ︷︷ ︸
=0

. (59)

Since det(g1,g2) involves only first derivatives (no Hessian terms) and the parabolic condition is a second-order
constraint, we must show these terms cancel. The key is that g(s) contains the term −W 2H ·sxy where sxy = (sx, sy)

T .
On the parabolic line:

H · sxy = λ(a · sxy)a. (60)

Thus g1 and g2 both contain components proportional to a, making their cross-product terms vanish: R = 0 on
K = 0.

Perspective Projection: Coordinate Transformation

For perspective projection, image coordinates (u, v) differ from surface coordinates (x, y). The surface radiance
Ls must be transformed through the projection Jacobian to obtain image intensity gradients.

Definition .8 (Image Intensity in Camera Coordinates). For a pinhole camera with focal length f , surface point
(X,Y, Z) projects to:

u = f
X

Z
, v = f

Y

Z
. (61)

The image intensity is:

I(u, v) = Ls(x(u, v), y(u, v)) · Ω(u, v), (62)

where Ω(u, v) is the geometric solid angle factor (constant for spherical imaging, cos4-law for planar).

The image gradient in camera coordinates is:

∇uvI = J−T
π · ∇xyLs · Ω+ Ls · ∇uvΩ , (63)

where Jπ = ∂(u, v)/∂(x, y) is the projection Jacobian.

For the left camera parameterization (where (x, y) are left-image coordinates), Jπ,L = I (identity), giving:

∇L
uvI = ∇xyLs · Ω+ Ls · ∇Ω. (64)

For the right camera, using the binocular Jacobian DΦ from Eq. (39):

∇R
u′v′I = DΦ−T · ∇xyLs · Ω′ + Ls · ∇Ω′. (65)

Warping and Singularity Inheritance

Theorem .9 (Singularity Inheritance Under Projection). Let S = {(x, y) : K(x, y) = 0} be a parabolic line on a
smooth surface z = Z(x, y). Under smooth BRDF and irradiance fields, the projected luminance field I(u, v) inherits
the singularity structure of S via diffeomorphic projection.
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Proof. The pinhole projection π : (x, y) 7→ (u, v) is a local diffeomorphism wherever Z(x, y) ̸= 0 (non-degenerate
depth). Let ϕ = π−1 denote the inverse mapping.
The parabolic line in image coordinates is S̃ = π(S). Since π is smooth and invertible, S̃ is a smooth curve

(diffeomorphic to S).
The image intensity is I = Ls ◦ ϕ · Ω. The Hessian of I in image coordinates is:

Hessuv(I) = JT
ϕ ·Hessxy(Ls) · Jϕ + (first-order terms). (66)

On the parabolic line, Hessxy(Z) has rank 1. Since Ls depends on Zx, Zy (first derivatives) and the lighting/BRDF
are smooth, the second-order structure of Ls inherits the rank-1 degeneracy from the surface Hessian. The congruence
transformation by Jϕ preserves rank, so Hessuv(I) also has rank 1 on S̃.

Theorem .10 (Binocular Warping Preserves Parabolic Structure). The binocular correspondence map Φ : (u, v)L →
(u′, v′)R with Jacobian DΦ given by Eq. (39) is a diffeomorphism. Warping the right image to left coordinates via
Φ−1 preserves the parabolic line locus.

Proof. The Jacobian DΦ =

(
1 + αZx αZy

0 1

)
has determinant det(DΦ) = 1 + αZx.

For typical surfaces where |Zx| < Z2/(fb) (bounded slope relative to depth), det(DΦ) > 0, ensuring Φ is a local
diffeomorphism.

Let IL(u, v) and IR(u
′, v′) be left and right image intensities. The warped right image is:

ĨR(u, v) = IR(Φ(u, v)). (67)

Both IL and ĨR are now in the same coordinate frame. The parabolic line S̃ appears at the same image locations in
both warped images, since the warping Φ is determined by surface geometry (specifically Zx, Zy), not by the lighting.

The gradients transform as:

∇ĨR = DΦT · ∇IR. (68)

On the parabolic line, both ∇IL and ∇ĨR inherit the rank-1 Hessian structure, and the resultant:

R̃ = det(∇IL,1,∇IL,2) = 0 on S̃. (69)

Recovery of 3D Surface Geometry

Theorem .11 (Shape from Binocular Differential Structure). Given camera parameters (f, b) and the binocular
Jacobian field DΦ(u, v) estimated from image correspondences, the surface depth Z(x, y) and its derivatives can be
recovered exactly.

Proof. From Eq. (39), the Jacobian components are:

(DΦ)11 = 1 +
fb

Z2
Zx, (70)

(DΦ)12 =
fb

Z2
Zy, (71)

(DΦ)21 = 0, (72)

(DΦ)22 = 1. (73)

Step 1: Surface slopes. From the off-diagonal and diagonal excess:

Zy

Zx
=

(DΦ)12
(DΦ)11 − 1

,
fb · Zx

Z2
= (DΦ)11 − 1. (74)

Step 2: Disparity provides depth. The horizontal disparity is d = u′ − u. From the correspondence equation:

d(u, v) =
fb

Z(x, y)
. (75)
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Step 3: Consistency relation. Combining Eqs. (74) and (75):

Zx =
Z2

fb
[(DΦ)11 − 1] =

1

d
[(DΦ)11 − 1] · Z. (76)

Using Z = fb/d:

Zx =
(DΦ)11 − 1

d
, Zy =

(DΦ)12
d

. (77)

Step 4: Second derivatives from Jacobian gradients. Differentiating Eq. (39):

∂(DΦ)11
∂x

=
fb

Z2

(
Zxx − 2Z2

x

Z

)
, (78)

∂(DΦ)12
∂x

=
fb

Z2

(
Zxy −

2ZxZy

Z

)
. (79)

Solving these equations yields Zxx, Zxy, Zyy, completing the second fundamental form.
Step 5: Gaussian curvature. From Eq. (53):

K =
ZxxZyy − Z2

xy

W 4
. (80)

The parabolic line is detected where K = 0, equivalently where the recovered Hessian determinant vanishes.

Corollary .12 (Complete 3D Reconstruction). The full surface z = Z(x, y) is reconstructed by integrating the
recovered slopes (Zx, Zy) from Eq. (77), with the integration constant determined by a reference depth from disparity.

Surface and Parabolic Line Recovery from Two Luminance Fields

We now prove the inverse problem: recovering the complete differential structure of the surface and its parabolic
lines from two measured luminance fields under different illuminations.

Theorem .13 (Photometric Recovery of Surface Differential Structure). Let I1(u, v) and I2(u, v) be two mea-
sured luminance fields of a Lambertian surface under non-collinear lighting directions s1 = (s1x, s1y, s1z)

T and
s2 = (s2x, s2y, s2z)

T with known albedo ρ and irradiance E0. Then:

1. The surface normal field n(u, v) is uniquely determined (up to a global sign)

2. The surface slopes Zx, Zy are exactly recovered

3. The parabolic line locus {K = 0} is exactly determined from ∇I1,∇I2

Proof. Step 1: Normal field from two intensities.
From Eq. (54), the two luminance measurements are:

I1 =
ρE0

πW
(s1z − Zxs1x − Zys1y) =

ρE0

π
(n · s1), (81)

I2 =
ρE0

πW
(s2z − Zxs2x − Zys2y) =

ρE0

π
(n · s2), (82)

where n = (−Zx,−Zy, 1)
T /W is the unit surface normal.

Define the scaled normal ñ =Wn = (−Zx,−Zy, 1)
T . Then:(

I1
I2

)
=
ρE0

πW

(
sT1
sT2

)
ñ. (83)
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Let S =

(
s1x s1y s1z
s2x s2y s2z

)
be the 2× 3 lighting matrix. We have:

πW

ρE0

(
I1
I2

)
= Sñ = S

−Zx

−Zy

1

 . (84)

Step 2: Solving for surface slopes.

Equation (84) gives two equations in three unknowns (Zx, Zy,W ). However, W =
√

1 + Z2
x + Z2

y provides the third

constraint. Expanding:

s1z − s1xZx − s1yZy =
πW

ρE0
I1, (85)

s2z − s2xZx − s2yZy =
πW

ρE0
I2. (86)

Eliminating W by taking ratios:

s1z − s1xZx − s1yZy

s2z − s2xZx − s2yZy
=
I1
I2
. (87)

This is one equation in (Zx, Zy). A second equation comes from the normalization ñz = 1:

(n · s1)2 + (n · s2)2 =
π2

ρ2E2
0

(I21 + I22 ). (88)

Combined with |n|2 = 1, we obtain:

Zx =
I2s1z − I1s2z
I1s2x − I2s1x

· I1(s2xZy + s2y)− I2(s1xZy + s1y)

I2s1z − I1s2z
. (89)

For the special case of orthogonal lights s1 = (1, 0, s1z)
T and s2 = (0, 1, s2z)

T :

Zx =
s1zI2 − πW

ρE0
I1I2

I2
, Zy =

s2zI1 − πW
ρE0

I1I2

I1
. (90)

Step 3: Second derivatives from luminance gradients.
Differentiating Eq. (85) with respect to x:

−s1xZxx − s1yZxy =
π

ρE0

(
W
∂I1
∂x

+ I1
∂W

∂x

)
. (91)

Using ∂W/∂x = (ZxZxx + ZyZxy)/W :

−s1xZxx − s1yZxy =
π

ρE0

(
W
∂I1
∂x

+
I1
W

(ZxZxx + ZyZxy)

)
. (92)

Similarly for ∂/∂y and for I2. This yields four linear equations:
−s1x − πI1Zx

ρE0W
−s1y − πI1Zy

ρE0W
0

0 −s1x − πI1Zx

ρE0W
−s1y − πI1Zy

ρE0W

−s2x − πI2Zx

ρE0W
−s2y − πI2Zy

ρE0W
0

0 −s2x − πI2Zx

ρE0W
−s2y − πI2Zy

ρE0W


Zxx

Zxy

Zyy

 =
πW

ρE0


∂I1/∂x

∂I1/∂y

∂I2/∂x

∂I2/∂y

 . (93)

This overdetermined system (4 equations, 3 unknowns) has a unique least-squares solution for the Hessian compo-
nents (Zxx, Zxy, Zyy).
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Step 4: Parabolic line from recovered Hessian.
The Gaussian curvature is:

K =
ZxxZyy − Z2

xy

W 4
. (94)

The parabolic line is the locus:

P = {(u, v) : Zxx(u, v)Zyy(u, v)− Z2
xy(u, v) = 0} . (95)

Since all quantities (Zxx, Zxy, Zyy) are recovered exactly from the measured gradients (∇I1,∇I2), the parabolic line
is exactly determined.

Theorem .14 (Direct Parabolic Detection from Resultant). The parabolic line can be detected directly from the
resultant of luminance gradients without explicit Hessian recovery:

R(u, v) = det(∇I1,∇I2) = 0 ⇐⇒ (u, v) ∈ P . (96)

Proof. From Theorem .7, on the parabolic line the Hessian has rank 1: H = λaaT . The luminance gradients have the
structure:

∇Ii = gi + µia, (97)

where gi depends on first-order surface structure and lighting, while µia encodes the Hessian contribution along the
asymptotic direction a.
The resultant is:

R = det(∇I1,∇I2) = det(g1 + µ1a,g2 + µ2a). (98)

Expanding and using the rank-1 structure on P:

R|P = det(g1,g2) + µ2 det(g1,a) + µ1 det(a,g2). (99)

Since gi also contains Hessian terms (through the W−3 factor), and these terms are all proportional to a on P, all
cross-determinants vanish, giving R|P = 0.

Conversely, if R = 0 at a point where ∇I1 ̸= 0 and ∇I2 ̸= 0, the gradients are parallel. This occurs generically only
when the Hessian is degenerate (rank ≤ 1), i.e., on the parabolic line.

Corollary .15 (Differential Structure of Parabolic Line). The tangent direction to the parabolic line at each point is
given by the common direction of the luminance gradients:

tP = ∇I1 × ez = ∇I2 × ez on P, (100)

where ez = (0, 0, 1)T and we identify 2D gradients with 3D vectors in the image plane.
The curvature of the parabolic line in the image plane is:

κP =
det(∇I1,∇2I1 · tP)

|∇I1|3
. (101)

Theorem .16 (Complete Surface Recovery from Two Luminance Fields). Given two luminance fields I1, I2 under
known non-collinear lights s1, s2 with known ρ,E0, the surface z = Z(x, y) is recovered up to a global translation by:

1. Recovering (Zx, Zy) from Eqs. (85)-(86)

2. Recovering (Zxx, Zxy, Zyy) from Eq. (93)

3. Integrating: Z(x, y) = Z0 +
∫
γ
Zx dx+ Zy dy

where γ is any path from a reference point to (x, y). The integrability condition ∂Zx/∂y = ∂Zy/∂x = Zxy is automat-
ically satisfied by the recovered Hessian.

Remark .17 (Geometric Interpretation). The two lighting directions span a 2D subspace of R3. The surface normal
n is constrained to lie on the intersection of two cones (one per light source), which generically gives a 1-parameter
family. The normalization |n| = 1 selects a discrete set of solutions (generically two, related by reflection). For
surfaces with nz > 0 (facing upward), the solution is unique.
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Unified Theory: Parabolic Lines Across All Projection Types

We now prove that parabolic line detection and full surface recovery are achievable across all three projection
settings—orthographic, planar binocular, and spherical binocular—with scale resolution from known geometric pa-
rameters.

Theorem .18 (Universal Parabolic Invariance). The parabolic line P = {K = 0} is a projective invariant: it
maps to a well-defined curve P̃ in image coordinates under any of the following projections, and can be recovered from
two luminance fields:

1. Orthographic: P̃ = P (identity mapping)

2. Planar perspective: P̃ = πplanar(P) (central projection)

3. Spherical perspective: P̃ = πsphere(P) (gnomonic-to-spherical mapping)

In all cases, P̃ is detected by R = det(∇I1,∇I2) = 0.

Proof. The key observation is that all three projections are local diffeomorphisms (smooth, invertible mappings with
smooth inverses) away from singular configurations.

Case 1: Orthographic. The projection is πorth : (x, y, Z(x, y)) 7→ (x, y). This is the identity on the (x, y) plane,
so P̃ = P exactly. The resultant theorem (Theorem .7) applies directly.

Case 2: Planar perspective. The projection is:

πplanar : (X,Y, Z) 7→ (u, v) =

(
f
X

Z
, f
Y

Z

)
. (102)

The Jacobian is:

Jplanar =
f

Z

(
1− XZx

Z −XZy

Z

−Y Zx

Z 1− Y Zy

Z

)
. (103)

For bounded X/Z, Y/Z (within field of view), det(Jplanar) ̸= 0, so πplanar is a diffeomorphism.
By Theorem .9, the rank-1 Hessian structure on P is preserved under the congruence transformation JTHJ , so

P̃ = πplanar(P) remains a smooth curve where the transformed Hessian is rank-1.
Case 3: Spherical perspective. The projection onto a unit sphere is:

πsphere : (X,Y, Z) 7→ (θ, ϕ) =

(
arctan

X

Z
, arctan

Y√
X2 + Z2

)
. (104)

The Jacobian involves:

Jsphere =

(
Z

X2+Z2 0 − X
X2+Z2

· · · · · · · · ·

)
· T, (105)

where T is the surface tangent matrix. Again, for surfaces with Z > 0 (in front of camera), this is a diffeomorphism.
The resultant R = det(∇θϕI1,∇θϕI2) transforms covariantly:

Rsphere = (detJsphere)
−2 ·Rsurface. (106)

Since det Jsphere ̸= 0, we have Rsphere = 0 ⇔ Rsurface = 0, i.e., on P̃.

Theorem .19 (Scale Resolution and Metric Recovery). The global scale ambiguity in surface recovery is resolved by:

1. Orthographic + known distance D: The surface z = Z(x, y) is recovered with absolute scale from Zabs =
D + Zrel.

2. Binocular + known baseline b: The absolute depth is Z = fb/d where d is disparity, providing metric scale
for the entire surface.
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Proof. Orthographic case.
From photometric stereo (Theorem .13), we recover the relative surface Zrel(x, y) up to an additive constant Z0.

The slopes (Zx, Zy) are scale-free (dimensionless ratios).
If the distance D from camera to a reference point (x0, y0) on the surface is known:

Zabs(x, y) = D +

∫ (x,y)

(x0,y0)

(Zx dx+ Zy dy). (107)

The parabolic line P = {K = 0} depends only on second derivatives (Zxx, Zxy, Zyy), which are scale-invariant:

K =
ZxxZyy − Z2

xy

W 4
is independent of Z0. (108)

Binocular case (planar or spherical).
From the disparity field d(u, v) = u′ − u, absolute depth is:

Z(u, v) =
fb

d(u, v)
. (109)

From Theorem .11, the surface slopes are:

Zx =
(DΦ)11 − 1

d
· fb
d

=
fb[(DΦ)11 − 1]

d2
, Zy =

fb(DΦ)12
d2

. (110)

The second derivatives are obtained by differentiating:

Zxx =
fb

d2

[
∂(DΦ)11

∂x
− 2[(DΦ)11 − 1]

d

∂d

∂x

]
, (111)

Zxy =
fb

d2

[
∂(DΦ)12

∂x
− 2(DΦ)12

d

∂d

∂x

]
, (112)

Zyy =
fb

d2

[
∂(DΦ)12

∂y
− 2(DΦ)12

d

∂d

∂y

]
. (113)

All quantities are in metric units (meters) when f and b are in meters.

Theorem .20 (Binocular Parabolic Detection: Planar vs. Spherical). For binocular systems with two lighting condi-
tions, the parabolic line is detected in both left and right images:

RL = det(∇IL,1,∇IL,2) = 0 on P̃L, (114)

RR = det(∇IR,1,∇IR,2) = 0 on P̃R, (115)

where P̃L and P̃R are the projected parabolic lines in left and right images respectively.
The correspondence between P̃L and P̃R is given by the binocular mapping Φ:

P̃R = Φ(P̃L). (116)

Proof. By Theorem .10, Φ is a diffeomorphism with Jacobian DΦ. Applying Φ to the left parabolic line:

Φ : (u, v) ∈ P̃L 7→ (u′, v′) = Φ(u, v) ∈ P̃R. (117)

The resultants transform as:

RR(Φ(u, v)) = (detDΦ)−2 ·RL(u, v). (118)

Since detDΦ = 1 + αZx ̸= 0 for typical surfaces, RR = 0 if and only if RL = 0, confirming that both eyes detect
the same parabolic line (in corresponding locations).

Planar binocular: Image gradients include cos4-vignetting correction:

∇uvI = ∇uv(Ls · cos4 θ) = cos4 θ · ∇Ls + Ls · ∇(cos4 θ). (119)

The vignetting gradient is smooth and nonzero, but does not affect the rank-1 Hessian structure on P.
Spherical binocular: No vignetting correction needed (Ω = const), so:

∇θϕI = ∇θϕLs. (120)

The spherical gradient inherits the parabolic structure directly.
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Corollary .21 (Unified Surface Recovery Algorithm). For any projection type (orthographic, planar binocular, spher-
ical binocular), the complete surface geometry is recovered by:

1. Parabolic line detection: Compute R = det(∇I1,∇I2); extract P̃ = {R = 0}.

2. First derivatives: Solve the photometric system Eqs. (85)-(86) for (Zx, Zy).

3. Second derivatives: Solve the gradient system Eq. (93) for (Zxx, Zxy, Zyy).

4. Scale resolution:

• Orthographic: Use known reference distance D

• Binocular: Use Z = fb/d with known baseline b

5. Surface integration: Z(x, y) = Z0 +
∫
γ
(Zx dx+ Zy dy).

6. Curvature computation: K = (ZxxZyy − Z2
xy)/W

4.

7. Verification: Confirm K = 0 on recovered P̃ (consistency check).

Theorem .22 (Parabolic Line Scale Invariance). The parabolic line locus P = {K = 0} is independent of global
scale. For any λ > 0:

Z ′(x, y) = λZ(x, y) ⇒ P ′ = P. (121)

Proof. Under scaling Z → λZ:

Z ′
x = λZx, Z ′

y = λZy, (122)

Z ′
xx = λZxx, Z ′

xy = λZxy, Z ′
yy = λZyy. (123)

The Hessian determinant scales as:

det(H ′) = Z ′
xxZ

′
yy − (Z ′

xy)
2 = λ2(ZxxZyy − Z2

xy) = λ2 det(H). (124)

The zero locus is preserved:

det(H ′) = 0 ⇔ det(H) = 0. (125)

Thus P ′ = P, independent of the scale factor λ.

Remark .23 (Practical Implications). This scale invariance has profound practical implications:

• Orthographic: Parabolic lines can be detected from uncalibrated images (unknown camera-to-scene distance),
then scale resolved post-hoc.

• Binocular: Parabolic lines appear at corresponding locations in left and right images regardless of baseline b,
enabling robust stereo matching along singularity curves.

• Multi-scale: The same parabolic line structure persists across zoom levels, providing a stable landmark for
object recognition.

Hypothesized Neural Implementation and Future Validation of Klein’s Program

We propose a speculative neural implementation hypothesis that requires rigorous experimental validation. The
transformation-covariant detection of geometric singularities demonstrated mathematically in this paper could poten-
tially be implemented in biological visual systems through hierarchical neural computations, though direct evidence
remains to be established.

Proposed mechanism: Center-surround retinal ganglion cells approximate spatial contrast through difference-
of-Gaussians filtering, potentially contributing to gradient estimation. V1 simple cells with orientation selectivity
compute directional derivatives. While standard models indicate simple cells respond to first-order edges rather
than second-order curvature (Hessian components), and complex cells compute phase-invariant energy rather than
determinants [26, 27], it remains an open question whether specialized neural populations implement higher-order
differential computations corresponding to singularity detection.

Required experimental validation:
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• Single-unit electrophysiology testing V1/V2 neurons for selectivity to parabolic lines and Hessian determinant
zero-crossings

• fMRI studies comparing brain responses to surfaces with prominent vs. absent geometric singularities

• Psychophysical experiments measuring human detection thresholds for parabolic line perturbations

• Cross-species comparative studies testing whether singularity detection is universal or specific to certain visual
systems

Until such validation is performed, the connection between our mathematical framework and biological vision
remains a testable hypothesis rather than established fact. The computational methods demonstrated here provide
rigorous tools for computer vision applications independent of biological implementation questions.

DISCUSSION

The HACKS framework contributes ex-post to Klein’s Erlangen Program by providing computational implementa-
tion of geometric invariant theory with applications across multiple domains. Hilbert’s algebraic foundations enable
systematic construction of complete invariant bases through transvectants and syzygies. Kolmogorov-Arnold theory
reduces high-dimensional complexity to univariate geometry plus symmetry, solving the dimension curse through su-
perposition, while KAM theory addresses geometric structure persistence under perturbation. Călugăreanu’s exact
integral formulas enable topological invariant computation from discrete data through the ABC recurrence. Salden’s
multi-local differential invariants bridge pure mathematics to computational measurements with applications in image
analysis and computer vision.

The categorical organization reveals connections between seemingly disparate mathematical systems. The frame-
work shows that Hilbert’s algebraic invariants, Arnold’s fluid vorticity, Călugăreanu’s knot writhe, and Salden’s image
determinants capture related geometric structures through different mathematical languages. Full categorical formal-
ization with rigorous natural transformation proofs and extension to physical gauge field theories is developed in our
companion paper on defect network formation [24].

The central result demonstrates that geometric singularities defined by vanishing Gaussian curvature determinant
exhibit transformation covariance under perspective projection. While this follows from elementary linear algebra
(preservation of vector parallelism under linear transformations), the result has practical significance: exact analytical
gradient computation enables detection of geometric singularities to machine precision (|R| ≈ 10−16), providing
robust foundation for computer vision algorithms. The framework connects Klein’s transformation group principles
to computational methods, with potential relevance to biological vision pending experimental validation.

Applications span multiple domains. In machine learning, Kolmogorov-Arnold networks achieve dimension reduc-
tion by exploiting superposition structure. In molecular biology, Călugăreanu’s linking number formulas classify DNA
topoisomers distinguishing knot types [24]. In computer vision, transformation-covariant singularity detection provides
robust feature extraction for shape recognition tasks. In condensed matter physics, defect network evolution follows
gradient flows of commutator energy, unifying vortex dynamics across fluid systems, superconductors, and cosmolog-
ical defect structures. In particle physics and topological quantum field theory (TQFT), the categorical framework
connects to knot invariants, linking numbers, and quantum invariants through HACKS algebraic-geometric-topological
defect network structures and flows. The framework’s extension to physical gauge field theories, topological defects,
quantum systems, and dynamical systems is developed comprehensively in our companion series [24]. Potential con-
nections to biological perception and aesthetic judgment remain speculative hypotheses requiring psychophysical and
neurophysiological validation through controlled experiments.

Open questions require further research. Extension to higher categorical structures beyond functors and natu-
ral transformations could reveal deeper connections in the HACKS framework. Quantum generalizations relating
Călugăreanu’s classical linking to quantum entanglement and topological quantum field theory remain to be devel-
oped. Neural implementation details connecting abstract categorical functors to cortical column architectures need
experimental validation through electrophysiology and functional imaging. Computational complexity of morphism
tracking and defect network analysis for large-scale systems requires algorithmic optimization. The framework’s
predictions for aesthetic perception and shape recognition await psychophysical testing and cross-cultural validation
studies.

The HACKS framework contributes ex-post to Klein’s program by demonstrating that transformation-covariant
geometric properties can be systematically detected through computational methods. While elementary in mathe-
matical foundation (parallelism preservation under linear transformation), the result enables practical applications
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in computer vision, image analysis, and potentially biological perception. The categorical organization provides con-
ceptual unity across algebraic (Hilbert), dynamical (Arnold-Kolmogorov), topological (Călugăreanu), and differential
(Salden) approaches to invariant detection. Future work must address categorical rigor, experimental validation, and
extension to physical systems comprehensively developed in our companion papers.

TESTABLE PREDICTIONS

The framework generates specific, falsifiable predictions across multiple domains.
Psychophysical Predictions: Human observers should detect parabolic lines (where det(Hess(f)) = 0) with

lower thresholds than generic curves, with predicted just-noticeable-difference (JND) of ∆K/K < 0.15 for Gaussian
curvature perturbations along parabolic lines. Observers should distinguish additive from multiplicative morphisms
with > 85% accuracy in 2-alternative forced choice tasks, based on topology preservation vs. destruction. Parabolic
line localization accuracy should remain constant (±1◦ visual angle) across viewing angles θ ∈ [0◦, 45◦], confirming
transformation covariance.

Neurophysiological Predictions: Single-unit recordings should reveal neurons selective to parabolic line stimuli
(gratings with det(Hess) = 0) distinct from edge detectors, with predicted selectivity index > 0.6. BOLD response to
surfaces with prominent parabolic lines should exceed response to control surfaces (matched for luminance/contrast)
by > 20% in ventral stream areas (V4, LO, pFs). Population decoding from V1/V2 should predict det(Hess(f)) with
correlation r > 0.7 to ground truth, testable via natural image encoding models.

Computational Benchmarks: Classification accuracy on synthetic shape datasets should improve by > 10%
when using parabolic line features vs. baseline SIFT/SURF descriptors, particularly under viewpoint changes. Multi-
view stereo algorithms incorporating transformation-covariant singularity detection should achieve < 2% depth error
on standard benchmarks (Middlebury, ETH3D). These predictions provide clear experimental targets for validating
or refuting the framework’s claims about biological vision and computational applications.

CODE AND DATA AVAILABILITY

The Python implementation of exact analytical gradient computation for orthographic surface analysis is available
at: orthographic gaussian three surfaces.py in the research repository. The code includes:

• Exact gradient computation via chain rule (no interpolation)

• Three surface morphism generators (original, additive, multiplicative)

• Analytical Hessian determinant calculations

• Resultant field computation with |R| < 10−15 precision on singularity curves

• Five-panel figure generation as shown in Figures 20-27

All figures are reproducible from source code. Surface parameters: z = x2 + xy2, Gaussian modulation σ =
2.0, domain [−5, 5] × [−5, 5], grid resolution 256 × 256 points. Light directions: L1 = (0, 0, 1) (vertical), L2 =
(sin 30◦, 0, cos 30◦) (30◦ tilt).

An interactive web interface will be provided allowing researchers to: (1) define custom surface functions z(x, y),
(2) apply orthographic and binocular perspective transformations, (3) visualize parabolic line detection under various
morphisms, (4) explore defect network structure emergence and evolution in real-time. This tool enables hands-
on exploration of transformation-covariant singularity detection and morphism-induced topology changes without
requiring local software installation.

Test Surfaces for Parabolic Line Analysis

To demonstrate the theory developed in Section , we present ten analytically defined surfaces with diverse parabolic
line topologies. Each surface exhibits characteristic ridge-rut-summit-valley structures where the Gaussian curvature
transitions between elliptic (K > 0) and hyperbolic (K < 0) regions.
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FIG. 1. Parabolic lines (yellow, K = 0) on test surfaces 1–5. Red regions: elliptic (K > 0, dome-like). Blue regions: hyperbolic
(K < 0, saddle-like). Black contours show height z(x, y).

TABLE II. Test surfaces for parabolic line analysis. The parabolic line P = {K = 0} separates elliptic and hyperbolic regions.

# Surface z(x, y) Parabolic topology

1 Monkey Saddle x3 − 3xy2 Isolated point at origin

2 Twin Peaks e−(x−1)2−y2

+ e−(x+1)2−y2

Two closed loops

3 Egg Carton sin(x) sin(y) Diagonal grid

4 Gaussian+Saddle e−r2 + 1
4
(x2 − y2) Closed loop + rays

5 Mountain Range sin(x)e−y2/4 Horizontal waves

6 Crossed Ridges e−x2

+ e−y2

X-cross pattern

7 Triple Peak
∑3

i=1 e
−|r−ci|2 Triangular network

8 Camel e−(x−1.2)2−y2

+ 0.9e−(x+1.2)2−y2

Connected loops

9 Spiral Ridge e−r2/4 + 0.3 cos(θ − 2r)e−r2/8 Spiral pattern

10 Double Spiral Yin-yang structure Double spiral

Surface 1: Monkey Saddle

z = x3 − 3xy2 = Re[(x+ iy)3] (126)

The monkey saddle has 3-fold rotational symmetry. Derivatives:

zx = 3x2 − 3y2, zy = −6xy, zxx = 6x, zxy = −6y, zyy = −6x. (127)
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FIG. 2. Parabolic lines (yellow, K = 0) on test surfaces 6–10. Note the Spiral Ridge (#9) with parabolic lines spiraling
from the central summit outward, and the Double Spiral (#10) with yin-yang structure. The Camel (#8) shows two elliptic
summits connected by hyperbolic saddle region.

Gaussian curvature numerator: zxxzyy − z2xy = −36x2 − 36y2 = −36r2. Since r2 ≥ 0, we have K ≤ 0 everywhere,
with K = 0 only at the origin (an isolated parabolic point, not a line). The surface is entirely hyperbolic except at
the degenerate origin.

Surface 2: Twin Peaks

z = e−(x−1)2−y2

+ e−(x+1)2−y2

(128)

Two Gaussian bumps centered at (±1, 0). Each peak is elliptic (K > 0), surrounded by a parabolic loop that
transitions to the hyperbolic saddle region between the peaks. The parabolic lines form two closed curves encircling
each summit.

Critical points:

• (1, 0): Summit (local max), K > 0, H < 0

• (−1, 0): Summit (local max), K > 0, H < 0

• (0, 0): Saddle point, K < 0
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Surface 3: Egg Carton

z = sin(x) sin(y) (129)

Periodic surface with derivatives:

zxx = − sin(x) sin(y), zxy = cos(x) cos(y), zyy = − sin(x) sin(y). (130)

Gaussian curvature numerator: sin2(x) sin2(y) − cos2(x) cos2(y). Parabolic lines occur where | sin(x) sin(y)| =
| cos(x) cos(y)|, forming a diagonal grid at x± y = kπ/2 for integer k.

Surface 4: Gaussian on Saddle

z = e−x2−y2

+
1

4
(x2 − y2) (131)

A Gaussian dome superimposed on a hyperbolic paraboloid. Near the origin, the Gaussian dominates creating an
elliptic summit. Far from the origin, the saddle term dominates creating hyperbolic regions. The parabolic line is a
closed curve surrounding the summit.

Critical point at origin: (0, 0) is a summit with z = 1, K > 0.

Surface 5: Mountain Range

z = sin(x)e−y2/4 (132)

Sinusoidal ridges and valleys along x, decaying in y. Derivatives:

zxx = − sin(x)e−y2/4, zyy = sin(x)e−y2/4(− 1
2 + y2

4 ). (133)

Parabolic lines occur where zxxzyy = z2xy, creating horizontal wave patterns.

Surface 6: Crossed Ridges

z = e−x2

+ e−y2

(134)

Recommended for clarity. Central summit at origin with four ridges extending along axes. Derivatives:

zx = −2xe−x2

, zy = −2ye−y2

, (135)

zxx = (4x2 − 2)e−x2

, zxy = 0, zyy = (4y2 − 2)e−y2

. (136)

Since zxy = 0, the parabolic line equation simplifies to:

(4x2 − 2)(4y2 − 2) = 0 ⇒ x = ± 1√
2
or y = ± 1√

2
. (137)

The parabolic lines are four straight lines forming an X-pattern (actually a square grid rotated 45°).
Critical point: (0, 0) is a summit with z = 2, K > 0.
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Surface 7: Triple Peak

z = e−x2−(y−1)2 + e−(x−
√

3
2 )2−(y+ 1

2 )
2

+ e−(x+
√

3
2 )2−(y+ 1

2 )
2

(138)

Three Gaussian peaks arranged in an equilateral triangle. Each peak is elliptic, surrounded by parabolic loops. The
three loops meet at a central region containing saddle points. The parabolic network has triangular topology.

Critical points (approximately):

• (0, 1): Summit

• (
√
3
2 ,−

1
2 ): Summit

• (−
√
3
2 ,−

1
2 ): Summit

• (0, 0) region: Central saddle

Surface 8: Camel

z = e−(x−1.2)2−y2

+ 0.9e−(x+1.2)2−y2

− 0.4e−x2−(y−0.8)2 (139)

Asymmetric two-humped surface (like a camel’s back) with a valley depression. The unequal heights (1.0 vs 0.9) and
the valley term create a more naturalistic landscape with connected parabolic loops.

Surface 9: Spiral Ridge

z = e−r2/4 + 0.3 cos(θ − 2r)e−r2/8, r =
√
x2 + y2, θ = arctan(y/x) (140)

Ridge spiraling to summit, rut spiraling to valley. The base term e−r2/4 creates a central summit. The spiral
modulation cos(θ − kr) with winding number k = 2 creates alternating ridges and ruts that spiral outward from the
center.

The parabolic lines form logarithmic spirals separating the elliptic summit region from the hyperbolic valleys
between spiral arms. This surface demonstrates how parabolic lines can have non-trivial topology (spirals) while still
satisfying K = 0.

Physical analogs include:

• Spiral galaxies (density waves)

• Hurricane structure (spiral rainbands)

• Nautilus shell growth patterns

Surface 10: Double Spiral

A yin-yang structure with two interleaved spiral arms of opposite sign:

z =
1

2

[
e−(r−1.5)2−(θ−1.5r)2/4 − e−(r−1.5)2−(θ−1.5r+π)2/4

]
(141)

This creates a surface with one spiral arm rising (ridge) and another falling (rut), meeting at saddle points. The
parabolic lines form a complex interleaved pattern.
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Summary: Ridge-Rut-Summit-Valley Structures

Each surface demonstrates distinct parabolic line topology:

• Isolated parabolic points: Monkey Saddle (origin only)

• Closed loops: Twin Peaks, Gaussian+Saddle (elliptic islands)

• Grid patterns: Egg Carton, Crossed Ridges (periodic/symmetric)

• Network structures: Triple Peak (triangular), Camel (connected)

• Spiral patterns: Spiral Ridge (logarithmic spirals), Double Spiral (yin-yang)

The Crossed Ridges surface z = e−x2

+ e−y2

is particularly suitable for theoretical analysis due to:

1. Exact analytical parabolic lines: x = ±1/
√
2 and y = ±1/

√
2

2. Clear separation of elliptic summit from hyperbolic valleys

3. 4-fold symmetry simplifying calculations

4. Zero mixed derivative zxy = 0 decoupling the Hessian

The Twin Peaks surface is recommended for binocular stereo analysis as it features:

1. Two distinct summits at known locations

2. Saddle point between peaks (depth discontinuity)

3. Closed parabolic loops amenable to tracking

4. Smooth, bounded height function

The Spiral Ridge surface is particularly interesting for demonstrating non-trivial parabolic topology:

1. Parabolic lines form logarithmic spirals

2. Ridge spirals inward toward central summit

3. Rut spirals outward toward hyperbolic valleys

4. Natural analog: spiral galaxies, hurricanes, nautilus shells

Orthographic vs Binocular Projection

Figure 3 compares parabolic line detection under orthographic and binocular projection for both spiral surfaces.
The key observation is that the resultant R = det(∇I1,∇I2) = 0 (green) tracks the true parabolic lines K = 0
(yellow) under both projection types.

The figures demonstrate that:

1. Orthographic case: Direct application of the resultant formula R = det(∇I1,∇I2) detects parabolic lines

2. Binocular case: The Jacobian of perspective projection preserves the singularity structure—R = 0 still coin-
cides with K = 0

3. Disparity: Varies smoothly along the spiral, enabling depth recovery

4. Spiral topology: Parabolic lines form logarithmic spirals, demonstrating non-trivial K = 0 loci
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FIG. 3. Spiral Ridge: Orthographic (top) vs Binocular (bottom) projection. Left to right: 3D surface, Light 1, Light 2,
Resultant R, Gaussian curvature K. Bottom row shows left/right eye views, disparity, binocular resultant, and depth. Yellow
= K = 0 (parabolic), Green = R = 0 (detected). The spiral parabolic lines are correctly detected in both projection types.

FIG. 4. Double Spiral: Orthographic vs Binocular projection analysis. The yin-yang structure creates alternating posi-
tive/negative height spiral arms. Parabolic lines (yellow, K = 0) separate elliptic and hyperbolic regions. The resultant (green,
R = 0) successfully tracks these spiral parabolic curves under both orthographic and binocular viewing conditions.

False Positives and Three-Light Detection

A careful examination of Figures 3 and 4 reveals locations where R = 0 but K ̸= 0. This occurs because:

Theorem .24 (Resultant Implications). For the resultant R = det(∇I1,∇I2):

K = 0 ⇒ R = 0 (always true) (142)

R = 0 ̸⇒ K = 0 (false positives possible) (143)
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The resultant vanishes whenever ∇I1 ∥ ∇I2 (gradients parallel), which occurs on parabolic lines but also at points
where the lighting geometry creates isophote tangency—where iso-intensity curves of I1 and I2 happen to be
tangent.

Solution: Three-Light Detection. Using three non-coplanar light directions L1,L2,L3, we compute all three
pairwise resultants:

R12 = det(∇I1,∇I2), R13 = det(∇I1,∇I3), R23 = det(∇I2,∇I3) (144)

The true parabolic line is detected as the intersection:

P = {R12 = 0} ∩ {R13 = 0} ∩ {R23 = 0} (145)

Since false positives depend on the specific light pair geometry, they differ for each Rij . The intersection eliminates
these lighting-dependent artifacts, leaving only the true parabolic locus.

FIG. 5. Three-Light Parabolic Detection for the Spiral Ridge surface. Top row: three lighting conditions and Gaussian
curvature K. Bottom row: each pairwise resultant Rij = 0 (green) has different false positives. Bottom-right: the intersection
of all Rij = 0 closely matches the true parabolic line K = 0 (yellow), eliminating false positives.

Binocular Transformation and Defect Densities

For binocular stereo, the transformation from left to right image coordinates defines a spatially-varying 2×2 matrix
field:

M(x, y) = JR · J−1
L (146)

where JL and JR are the Jacobians of the left and right perspective projections.
For projection (u, v) = f(X ± b/2, Y )/(D − Z) with baseline b, focal length f , and distance D:

J =
f

d

(
1 + (X ± b/2)Zx/d (X ± b/2)Zy/d

Y Zx/d 1 + Y Zy/d

)
(147)

where d = D − Z.
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Polar Decomposition. The transformation matrix M decomposes as:

M = R(θ) · S ·H (148)

where R(θ) is rotation, S is isotropic scale, and H is shear (anisotropic deformation).
Defect Densities. For a spatially-varying matrix field M(x, y), the non-integrability is measured by defect

densities:

ρrot =
∂θ

∂x
(disclination density—rotation field curl) (149)

ρscale = ∇ · log s (dilation source—scale field divergence) (150)

ρshear = ∇× σ (Burgers density—shear field curl) (151)

These densities vanish for integrable (flat) transformations and are non-zero where the stereo correspondence has
intrinsic curvature.

FIG. 6. Defect Densities for the Spiral Ridge binocular transformation. Left: Gaussian curvature K. Center-left: rotation
defect ρrot (disclination density). Center-right: scale defect ρscale (dilation source). Right: shear defect ρshear (Burgers density).
Yellow lines mark K = 0. The defect densities are strongly correlated with surface curvature structure.

Theorem .25 (Defect-Curvature Correspondence). The defect densities of the binocular L→R transformation are
determined by the surface differential structure:

1. Rotation defects arise from torsion in the surface embedding

2. Scale defects arise from mean curvature H

3. Shear defects arise from Gaussian curvature K

On parabolic lines (K = 0), the shear defect density changes sign.

Defect Densities from Image Differential Structures

The defect analysis can be formulated entirely in terms of image differential structures without explicit reference
to surface coordinates. Given two intensity fields I1(x, y) and I2(x, y), define the transformation matrix M by:

∇I2 = M(x, y) · ∇I1 (152)

This encodes how gradient directions rotate and scale between images:

s =
|∇I2|
|∇I1|

(scale ratio) (153)

θ = ∠(∇I2)− ∠(∇I1) (rotation angle) (154)

Orthographic Case. For two different illumination directions L1,L2:

Mortho maps isophotes of I1 to isophotes of I2 (155)
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Defects reveal surface curvature structure plus BRDF anisotropy.

Binocular Case. For left-right stereo correspondence:

Mbino = JR · J−1
L (156)

Defects reveal surface geometry plus occlusion boundaries.

FIG. 7. Orthographic Defect Densities for the Spiral Ridge under four light-pair transformations. Rows: rotation defect
ρrot, scale defect ρscale, shear defect ρshear. Columns: different light direction pairs. Yellow lines = K = 0. Defects vary with
lighting geometry but consistently correlate with parabolic structure.

Remark .26 (Physical Interpretation of Defects). Defect densities are non-zero where the transformation is non-
integrable. This occurs at:

1. Parabolic lines (K = 0): Shear defect changes sign

2. Occlusion boundaries: Scale defect spikes (depth discontinuity)

3. BRDF transitions: Rotation defect spikes (material property change)

In the presence of occlusions, these defects become singular—corresponding to non-universal covariance transfor-
mations that cannot be smoothly continued across the boundary.
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FIG. 8. Binocular Defect Densities for L→R transformation. Top: rotation θ, scale s, shear |σ|, Gaussian K. Bottom:
defect densities ρrot, ρscale, ρshear, and total defect magnitude. The binocular case shows smoother, geometry-driven defect
patterns compared to the lighting-sensitive orthographic case.

Active Vision: Microsaccades Eliminate False Positives

Just as three light directions eliminate false positives in photometric stereo (Section 5), microsaccades (small
involuntary eye movements) can eliminate false positives in binocular stereo.

Theorem .27 (Microsaccade Hypothesis). Let Ri = 0 denote the detected parabolic locus from viewpoint i (microsac-
cade position). Then:

Ptrue =

n⋂
i=1

{Ri = 0} (157)

converges to the true parabolic line {K = 0} as n→ ∞ with sufficiently diverse microsaccade directions.

Mechanism:

1. Each microsaccade position creates slightly different projection geometry

2. False positives (R = 0 where K ̸= 0) depend on specific viewpoint

3. True parabolic lines (K = 0) persist across all viewpoints

4. Intersection eliminates viewpoint-dependent artifacts

This is consistent with active vision strategies observed in biological visual systems, where microsaccades serve
multiple perceptual functions beyond image stabilization.

Binocular Parabolic Detection: Eight Morphism Variants

The Intuition: How Many Ways Can a Surface Be Seen?

When you look at a smooth object—a vase, a face, a sculpture—your visual system extracts information about its
shape. But what information, exactly? This depends on lighting, viewpoint, and what features the visual system can
measure.
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FIG. 9. Comparison of all three defect types across orthographic (two light pairs) and binocular cases. Each row shows
one defect type; rightmost column shows Gaussian curvature K for reference. Key observation: binocular defects (column 3)
are smoother and more directly related to surface curvature than orthographic defects (columns 1-2), which additionally encode
lighting geometry.

We explore this question systematically by testing eight different “morphism variants”—eight different combinations
of shape information. Think of these as eight different visual systems, each with access to different measurements:

• Variant 1: Can only measure height (like a depth camera)

• Variant 2: Height plus a constant offset (accounts for viewing distance)

• Variants 3–4: Include gradient magnitude (how steeply the surface slopes)

• Variants 5–8: Include metric information (local scale and orientation)

The question is: Which of these “visual systems” can correctly detect parabolic lines? The answer, as we’ll see,
reveals something deep about the geometry of perception.

The Eight Morphism Variants

We now examine parabolic line detection across all eight morphism variants for both binocular camera systems
(planar and spherical retina).

The eight variants correspond to different information available to the visual system:
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FIG. 10. Microsaccade Hypothesis Verification. Left: Single viewpoint R = 0 (green) has false positives beyond K = 0
(yellow). Center: Different microsaccade positions produce different R = 0 patterns. Right: Intersection of 6 microsaccade
positions closely matches true parabolic lines. Rows compare planar vs. spherical retina projections.

Variant Available Information

1 z (height only)

2 z + z0 (height + offset)

3 z, z1 (height + gradient magnitude)

4 z, z1 + z0 (height + gradient + offset)

5 z, g (height + metric)

6 (z + z0), g (shifted height + metric)

7 z, z1, g (height + gradient + metric)

8 (z, z1 + z0), g (full information)

Remark .28 (Why Variants 3 and 8 are “Complex”). Variants 3, 4, 7, 8 include gradient magnitude z1 = |∇z|, which
has its own zero-crossings at extrema of z (summit and valley points where ∇z = 0). The resultant R = det(∇z,∇z1)
thus vanishes not only on parabolic lines but also along curves connecting these extrema to parabolic lines, creating
more intricate R = 0 patterns.

Remark .29 (Microsaccades Resolve Variants 3 and 8). The microsaccade strategy (Section 10) resolves the complexity
of gradient-based variants through a different mechanism than the three-light approach:

Three-light detection eliminates false positives from lighting geometry—isophote tangencies that depend on light
direction. However, it does not address false positives from surface geometry such as gradient extrema.
Microsaccades eliminate both types of false positives:

1. Lighting false positives: Different viewpoints sample different projective relationships between isophotes

2. Gradient false positives: While extrema of z are surface properties (viewpoint-independent), the projective
interaction between ∇z and ∇z1 in the resultant computation depends on viewing geometry

Specifically, for variants 3, 4, 7, 8, the resultant Ri from microsaccade position i vanishes along:

{Ri = 0} = {K = 0} ∪ Ei (158)
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FIG. 11. Planar Retina: Parabolic detection across 8 morphism variants. Yellow = true K = 0, Green = detected R = 0.
Variants 1–2 (height-based) track parabolic lines well. Variants 3–4 and 7–8 (gradient-based) show more complex patterns.

where Ei represents viewpoint-dependent “spurious” loci. The intersection

n⋂
i=1

{Ri = 0} = {K = 0} ∪
n⋂

i=1

Ei ≈ {K = 0} (159)

converges to the true parabolic line as the spurious loci Ei differ across viewpoints and their intersection shrinks to
measure zero.

This provides a unified active vision strategy that works across all eight morphism variants, making microsac-
cades a more general solution than multi-light photometric stereo.

Why Detection Requires Active Vision: The Fundamental Limitation

We now establish why active vision (microsaccades) is mathematically necessary for parabolic detection, not merely
helpful. This reveals a deep connection between differential geometry and perception.

The Three Contours: K, K’, and R

Consider the binocular warping transformation M = JR · J−1
L that relates left and right camera Jacobians. Three

fundamentally different contours must be distinguished:

1. K = 0: Original parabolic lines in world coordinates

K = det(H) = HxxHyy −H2
xy = 0 (160)

2. K’ = 0: Warped parabolic lines after Hessian transformation

K ′ = det(MT ·H ·M) = 0 (161)

The transformation H 7→ MTHM is a congruence, preserving definiteness but not eigenvalues.
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FIG. 12. Spherical Retina: Parabolic detection across 8 morphism variants. The spherical projection introduces different
distortions compared to planar, affecting the R = 0 loci particularly at the periphery.

3. R = 0: Binocular resultant from intensity gradients

R = det(∇IL,∇IR) =
∂IL
∂x

∂IR
∂y

− ∂IL
∂y

∂IR
∂x

= 0 (162)

The Critical Observation

R=0 detects neither K=0 nor K’=0 exactly!
The intensity I depends on shading (surface normal · light direction), which involves first-order derivatives ∇Z. But

K depends on second-order derivatives (Hessian). The relationship between R = 0 and K = 0 is therefore indirect:

• R = 0 includes the true K = 0 (under regularity conditions)

• R = 0 includes false positives from:

– Lighting geometry (isophote alignment)

– Perspective distortion (camera geometry)

– Gradient extrema (surface topology)

The Solution: Temporal Intersection

The key insight is that false positives are view-dependent while true parabolic lines are view-invariant:

True K=0 False Positives

Surface property? Yes (intrinsic) No (extrinsic)

Changes with fixation? No Yes

Survives intersection? Yes No
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FIG. 13. Comparison: Planar (row 1) vs. Spherical (row 2) retina for selected variants (1, 3, 5, 8). Row 3 shows Gaussian
curvature K reference. The planar retina provides more accurate parabolic detection for central regions, while spherical retina
better handles wide field-of-view.

Therefore, the intersection across microsaccade positions:

N⋂
i=1

{Ri = 0} N→∞−−−−→ {K = 0} (163)

converges to the true parabolic structure.

Biological Prediction

This analysis makes a testable prediction: observers cannot accurately perceive parabolic lines (shape
singularities) from a single static fixation. Accurate perception requires:

1. Multiple microsaccades (≥ 3–5 distinct viewpoints)

2. Temporal integration (accumulating evidence across fixations)

3. Attention maintenance (keeping the candidate region in foveal view)

This explains why shape perception takes time (∼200–500 ms) and why eye movements “wander” along object
contours—the visual system is actively sampling to filter view-dependent artifacts.
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Counter-Argument: Why Not Just Use Depth?

One might argue: “If binocular vision provides depth, why not compute K directly from depth?” The answer
reveals another limitation:

1. Depth estimation is noisy: Stereo matching produces disparity, not depth directly

2. Second derivatives amplify noise: K = HxxHyy −H2
xy requires differentiating twice

3. Sampling is sparse: Disparity is only computed at textured regions

The microsaccade strategy sidesteps these issues by detecting K = 0 through invariance under viewpoint change
rather than explicit differentiation. This is more robust to noise and works even with sparse depth information.

Connection to Active Vision Theory

This result provides computational justification for the ecological approach to perception [? ]:

“Perception is not the achievement of a single glance but the outcome of an extended process of explo-
ration.”

Our analysis shows this is not merely philosophical but mathematically necessary: single-view detection is funda-
mentally incomplete for geometric singularities. Active sampling through microsaccades is the visual system’s solution
to an ill-posed inverse problem.

Application: Henry Moore Sculpture Analysis

To validate our theory on realistic geometry, we analyze a synthetic sculpture inspired by Henry Moore’s organic
forms—featuring smooth curves, a characteristic “hole” (negative space), and clear parabolic structure.

FIG. 14. Henry Moore-Inspired Sculpture. Left: Reclining figure with characteristic hole. Center: Gaussian curvature
(Red = K>0 elliptic/convex, Blue = K<0 hyperbolic/saddle). Right: Parabolic lines K=0 (yellow) mark boundaries between
curvature regions.

The results confirm our theoretical predictions:

• Single fixation: R=0 includes extensive false positive curves

• Multiple fixations: Intersection progressively eliminates artifacts

• 8–16 fixations: Detection closely matches true parabolic lines
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FIG. 15. Complete Analysis. Top: Surface, Gaussian curvature K, Mean curvature H. Bottom left: Single-view R=0
(magenta) shows many false positives beyond K=0 (yellow dashed). Bottom center: Intersection density from 16 fixations—
bright regions indicate consistent R≈0 across views. Bottom right: Final detection (green) matches ground-truth K=0 (yellow).
Red dots show gaze path along sculpture.

• Gaze path: Following the sculpture contour is computationally optimal

This demonstrates that active vision—wandering attention along object contours with rapid microsaccades—is not
merely behavioral but computationally necessary for accurate shape perception.

Non-Universal Covariance Transformations

In physics, most transformations are covariant: physical laws retain their form under smooth coordinate changes.
However, vision encounters transformations that are fundamentally non-covariant—they cannot be expressed as
smooth coordinate changes.

Three sources of non-covariant transformations:

1. Occlusion Boundaries (Spatial Discontinuity)

• Depth Z(x, y) has a jump discontinuity

• Gradients blow up: |∇Z| → ∞
• Defect density: SINGULAR (Dirac delta)

• Physical: One surface occluding another

2. Optic Flow Singularities (Temporal)

• Flow field (u, v) = d(x, y)/dt from ego-motion

• Singularities: Focus of Expansion (FOE), vortices, saddles



47

• Defect density: Concentrated at singular points

• Physical: Self-motion, object motion, time-to-contact

3. BRDF Transitions (Material)

• Reflectance function changes discontinuously

• Same geometry, different appearance

• Defect density: Spikes at material boundaries

• Physical: Painted regions, texture boundaries

FIG. 16. Non-Universal Covariance Transformations. Column 1: Smooth surface (universal covariance, defects at
K = 0). Column 2: Occlusion boundary (singular defects). Column 3: Optic flow (temporal defects). Column 4: BRDF
transition (material defects). Row 1: Source type. Row 2: Defect density (cyan = detected boundary).

Optic Flow Defect Analysis

For camera motion with translational velocity V = (Vx, Vy, Vz) and rotational velocity Ω = (Ωx,Ωy,Ωz), the optic
flow field is:

u =
f

d

(
Vzx

d
− Vx

)
+Ωx

xy

f
− Ωy

(
f +

x2

f

)
+Ωzy (164)

v =
f

d

(
Vzy

d
− Vy

)
+Ωx

(
f +

y2

f

)
− Ωy

xy

f
− Ωzx (165)

where d = D − Z is depth and f is focal length.
The flow field has natural defect structure:

Divergence: ∇ · F =
∂u

∂x
+
∂v

∂y
(expansion/contraction) (166)

Curl: ∇× F =
∂v

∂x
− ∂u

∂y
(rotation) (167)

Key observation: Flow divergence and rotation defects are modulated by surface depth, creating patterns that
correlate with the underlying surface geometry—including parabolic lines.
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FIG. 17. Optic Flow Defect Analysis. Columns: Forward motion (Vz), Lateral motion (Vx), Rotation (Ωz), Combined. Row
1: Flow field with vectors. Row 2: Divergence (red = expansion, blue = contraction). Row 3: Rotation defect ρrot = ∂ω/∂x.
Yellow lines = parabolic K = 0.

Binocular Optic Flow: Transformation Matrices

The transformation matrixM = JR·J−1
L relating left and right flow Jacobians encodes complete motion information.

From M we extract:

1. Time to Contact τ = 2/div(u): For approach at velocity Vz toward depth Z, τ = Z/Vz

2. Rotation Rate ω = 1
2curl(u): Rotation about optical axis

3. Scale Rate s = 1
2div(u): Looming/receding

4. Shear Rate γ = ∥E∥F where E is traceless symmetric part: Surface deformation

From the left-right transformation, we compute defect densities:

ρdisclination =
∂(ωR − ωL)

∂x
(rotation defect) (168)

ρdislocation = ∇× (∇sR −∇sL) (Burgers vector density) (169)
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FIG. 18. Binocular Optic Flow Analysis. Sphere approaching with forward motion Vz = 1 and rotation ωz = 0.2. Row 1:
Depth, L/R flows, time-to-contact. Row 2: Scale rates and scale source density. Row 3: Rotation rates and disclination density.
Row 4: Shear rates, dislocation density, and total defect. Defects concentrate at the sphere boundary (occlusion edge),
demonstrating how non-integrable transformations reveal object boundaries. Video: optic flow binocular defects.mp4

Occlusion Boundaries: Singular Defects

At occlusion boundaries, the depth function Z(x, y) is discontinuous. This creates:

|∇Z| → ∞, |K|, |H| → ∞ (singular) (170)

Unlike smooth parabolic lines where K = 0 but curvature is finite, occlusion boundaries have infinite curvature
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concentration—a Dirac delta in defect density.

FIG. 19. Occlusion Boundary Defects. Row 1: Step edge (depth discontinuity). Row 2: Complex occlusion (foreground
covering background). Columns: Surface, gradient magnitude |∇Z|, Gaussian curvature K, defect magnitude |K|+ |H|. Cyan
= detected boundary. Defects become singular at discontinuities.

Theorem .30 (Covariance Classification). Image transformations in vision fall into three categories:

1. Universal covariant: Smooth coordinate changes (diffeomorphisms). Parabolic lines are rank-deficient but
smooth.

2. Locally covariant: Smooth away from isolated singular points (e.g., flow FOE, vortices).

3. Non-covariant: Discontinuous transformations (occlusions, BRDF boundaries) that cannot be described by
any smooth coordinate system.

The visual system must distinguish these categories, using:

• Defect density magnitude: Finite (parabolic) vs. singular (occlusion)

• Defect topology: Index of flow singularities

• Multi-cue integration: Combining shading, stereo, and motion to resolve ambiguities
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FIGURES

FIG. 20. Variant 1: Baseline Surface (z’ = z). Five-panel analysis of the base surface z = x2 + xy2 without morphisms
or Gaussian modulation. Panel 1: 3D surface showing parabolic lines K(z′) = 0 in red. Panel 2: Surface height contours with
projected parabolic lines. Panels 3-4: Luminance fields I ′1 and I ′2 under vertical and 30◦ tilted lighting. Panel 5: Resultant
R(I ′1, I

′
2) showing R=0 contours (yellow) detecting parabolic structure x = y2 (red).

FIG. 21. Variant 2: Additive Morphism (z’ = z + z0). Additive morphism with z0 = 0.5x− 0.5y (linear perturbation).
The parabolic line x = y2 is exactly preserved, confirming transformation covariance under additive perturbations. R=0
contours (yellow) detect the same singularities as the original surface.

FIG. 22. Variant 3: Multiplicative Morphism (z’ = z × z1). Multiplicative morphism with z1 = 0.5+ [(x+3)2 + y2]/58
(off-center quadratic). The parabolic line is deformed, with new R=0 structures emerging as the original parabola x = y2 is
displaced.
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FIG. 23. Variant 4: Combined Morphism (z’ = z × z1 + z0). Combined multiplicative and additive morphism.
The interplay between multiplicative and additive effects creates complex parabolic structures with both preservation and
deformation characteristics.

FIG. 24. Variant 5: Gaussian Modulation Only (z’ = z × g). Pure Gaussian modulation with g = exp(−r2/2σ2),
σ = 2. The parabolic line topology is preserved but confined to the Gaussian envelope, demonstrating how localization affects
singularity detection.

FIG. 25. Variant 6: Additive with Gaussian (z’ = (z + z0) × g). Combination of additive morphism and Gaussian
modulation. The parabolic line remains preserved within the Gaussian envelope, confirming transformation covariance persists
under localization.

FIG. 26. Variant 7: Multiplicative with Gaussian (z’ = z × z1 × g). Multiplicative morphism with Gaussian
localization. The parabolic landscape is severely deformed, with complex R=0 structures forming within the Gaussian envelope,
some appearing as closed loops.
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FIG. 27. Variant 8: Full Morphism (z’ = (z × z1 + z0) × g). Complete morphism combining multiplicative, additive,
and Gaussian effects. This represents the most general transformation, showing how all three effects interact to create rich
topological structures detectable through the HACKS framework.
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WARPING EFFECTS ON DIFFERENTIAL STRUCTURE

The binocular warping transformation M = JR · J−1
L affects both first and second order differential structure:

First Order: Gradient Transformation

∇IR = M · ∇IL (171)

The gradient magnitude scales by |det(M)|1/2 and direction rotates by arg(M).

Second Order: Hessian Transformation

HR = MT ·HL ·M+ (correction terms) (172)

The Gaussian curvature transforms as KR ≈ det(M)2 ·KL, so parabolic lines K = 0 map to Kwarped = 0.

Defect Densities from Non-Integrability

ρdisclination = |∇ ×M| (rotation defect) (173)

ρdislocation = ∇ ·M (scale defect) (174)

Microsaccades for Robust Parabolic Detection

Since binocular R = 0 includes view-dependent false positives, multiple fixations are required:

N⋂
i=1

{Ri = 0} N→∞−−−−→ {K = 0} (175)

Each microsaccade shifts the false positives while the true K = 0 remains invariant. This suggests microsaccades
serve a computational purpose for geometry perception, consistent with active vision theories [? ? ? ].
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FIG. 28. Microsaccade-based Parabolic Detection. Top row: Individual fixations (red dots) give different R = 0 pat-
terns (magenta) while true K = 0 (yellow) stays fixed. Bottom row: Progressive intersection of 2, 4, 8, 12 views. Green
= detected contours. With sufficient microsaccades, the detected contours converge to the true parabolic lines. Video:
wandering attention parabolic.mp4

FIG. 29. Differential Structure: Variant 1 (z’ = z). Row 1: World coordinates showing K, |∇Z|, Hessian components
Hxx, Hxy, Hyy, and depth Z. Row 2: Planar binocular warping—Kwarped (green = warped, yellow = original), gradient
scale/rotation, det(M), non-integrability |curlM|, and curvature ratio KR/KL. Row 3: Same for spherical binocular. Note
how defects concentrate at parabolic boundaries.
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FIG. 30. Summary: 8 Variants with Planar vs Spherical Warping. Columns: World K, Planar Kwarp, Spherical Kwarp,
Planar |curlM|, Spherical |curlM|, Difference |Kp − Ks|. Yellow = original K = 0, Green = warped K = 0, Cyan = defect
concentration. Planar shows stronger central distortion; Spherical shows stronger peripheral distortion.
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DETAILED BINOCULAR WARPING ANALYSIS: EIGHT MORPHISM VARIANTS

The following figures show transformation matrix decomposition for all variants:

FIG. 31. Variant 1: Baseline (z’ = z). Binocular warping analysis with transformation matrix M = JR · J−1
L . Row 1:

World K, Left/Right cameras with projected K = 0 (red), Resultant R. Row 2: Scale, Rotation, Shear from M, Depth.

FIG. 32. Variant 2: Additive (z’ = z + z0). With z0 = 0.5x− 0.5y (linear). The parabolic line is exactly preserved in
camera projections. Transformation matrix shows uniform scale/rotation.
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FIG. 33. Variant 3: Multiplicative (z’ = z × z1). With z1 = 0.5+ [(x+3)2 + y2]/58. Parabolic line deformed in camera
space. M shows non-uniform scale and rotation.

FIG. 34. Variant 4: Combined (z’ = z × z1 + z0). Combined multiplicative and additive effects. Complex interaction
visible in both camera views and transformation matrix decomposition.

The HACKS Ladder: A Hierarchy of Schemes

“Nature uses only the longest threads to weave her patterns, so each small piece of her fabric reveals the
organization of the entire tapestry.”
—Richard Feynman
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FIG. 35. Variant 5: Gaussian Only (z’ = z × g). Pure Gaussian localization. Parabolic topology bounded within
envelope. Transformation matrix shows radially varying scale.

FIG. 36. Variant 6: Additive + Gaussian (z’ = (z + z0) × g). Additive morphism with Gaussian localization. Parabolic
line preserved in camera projections within envelope.

The Big Picture: Levels of Description

When you look at a Henry Moore sculpture, what do you see? At one level, you see a shape—smooth curves,
hollow spaces, a sense of human form. At another level, you see surfaces—regions of positive curvature (convex, like
a forehead) and negative curvature (saddle-shaped, like a neck). At yet another level, you see light and shadow—the
play of illumination that reveals the form.
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FIG. 37. Variant 7: Multiplicative + Gaussian (z’ = z × z1 × g). Complex R = 0 structures. Transformation matrix
shows strong shear concentration near parabolic lines.

FIG. 38. Variant 8: Full Morphism (z’ = (z × z1 + z0) × g). Complete morphism. Full transformation matrix analysis
reveals scale, rotation, and shear defect concentrations at parabolic boundaries.

These are not just different ways of talking about the same thing. They are different levels of description, each
with its own invariants, its own structures, its own rules. The HACKS framework doesn’t just provide tools for each
level—it provides a ladder connecting them.

Think of it like a building with four floors:

• Top floor (Topological): The “big picture”—how many holes? Is it connected? Could you untangle it?

• Third floor (Geometric): The shape—curvature, angles, distances.
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FIG. 39. Summary: 8 Variants with Binocular Warping. All morphism variants showing: Gaussian curvature K,
Binocular resultant R, Surface depth Z, Curvature gradient |∇K| (defect density). Yellow = K = 0, Green = R = 0. Defects
concentrate at parabolic lines across all variants.
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• Second floor (Algebraic): The patterns—invariants, symmetries, polynomial relationships.

• Ground floor (Sampling): The measurements—pixels, eye fixations, neural signals.

The magic happens at the staircases—the transitions between floors. When you can’t smoothly go from one
floor to another, there’s a defect : a place where the structure breaks down, where something topological manifests
geometrically, where algebra fails to capture form.

This section formalizes the HACKS Ladder as a meta-scheme—a way of organizing not just invariants, but the
transitions between different kinds of invariants.

Motivation: Phenomena Requiring Hierarchical Transitions

Several well-known perceptual phenomena demonstrate that biological systems must navigate between descriptive
levels:

Phenomenon Mechanism Level Transition

Kanizsa Triangle Illusory contour completion Topology → Geometry

Motion Aftereffects Baseline adaptation/scaling Scale recalibration

Occlusion Boundaries Non-covariant singularities Geometry → Topology

Binocular K vs R Measurement ̸= reality Algebra → Geometry

Each involves transitions between levels where something fails to transform smoothly. The defects mark
where the transition breaks down.

The Four-Level Hierarchy

TOPOLOGICALdefectsGEOMETRICdefectsALGEBRAICdefectsSAMPLING (176)

Level 4: Topological (Global/Cosmic)

• Discrete invariants: linking numbers, Euler characteristic, winding numbers

• Preserved under continuous deformation

• Defects: topological charges, knottedness

• HACKS component: Călugăreanu (ABC recurrence, Tn hierarchy)

Level 3: Geometric (Medium/Curvature)

• Smooth invariants: Gaussian curvature K, mean curvature H, principal directions

• Preserved under isometry

• Defects: parabolic lines (K = 0), umbilics, ridge/valley

• HACKS component: Arnold (singularity classification, KAM stability)

Level 2: Algebraic (Local/Differential)

• Polynomial invariants: transvectants, resultants, discriminants

• Preserved under linear transformation

• Defects: syzygies, non-integrability, |∇ ×M| ≠ 0

• HACKS component: Hilbert (invariant bases, syzygy chains)

Level 1: Sampling (Micro/Discrete)
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• Discrete measurements: pixels, fixations, neural firing rates

• Preserved under permutation (re-ordering)

• Defects: aliasing, quantization, incomplete coverage

• HACKS component: Microsaccades (temporal sampling for filtering)

Transition Operators: Kolmogorov-Salden Scaling

The vertical arrows between levels are provided by Kolmogorov’s dimensional reduction and Salden’s multi-scale
framework:

Coarsening (Upward ↑):

Cσ : Level n→ Level n+ 1 (177)

Integration, averaging, forgetting local detail. Defects = where coarsening fails (singularities preserved across scales).
Refinement (Downward ↓):

Rσ : Level n→ Level n− 1 (178)

Differentiation, localization, revealing finer structure. Defects = where refinement creates new singularities.
Scale-Space Flow:

∂ρ

∂σ
= L[ρ] (179)

where ρ(x, σ) is defect density at position x and scale σ, and L is the appropriate diffusion operator. Fixed points
of this flow are scale-invariant structures; bifurcations mark topological transitions.

Non-Local Interactions Across Dimensions

The ladder permits three types of interactions:

1. Horizontal (intra-level): Local interactions within a single level (e.g., curvature flow on a surface)

2. Vertical (inter-level): Scale interactions between adjacent levels (e.g., coarse-to-fine matching)

3. Diagonal (trans-level): Non-local interactions that skip levels—where global topology directly constrains
local measurements

The Kanizsa Triangle exemplifies diagonal interaction: global topological closure (“must form closed triangle”)
directly constrains local intensity (illusory edges appear where no physical edge exists). The brain infers geometric
structure from topological constraints, bypassing the algebraic level entirely.

The HACKS Ladder Diagram

Theoretical Significance

This ladder provides:

1. Organization: A systematic way to classify defect structures by their level

2. Transitions: Explicit operators for moving between levels

3. Completeness: Each HACKS component addresses a specific level

4. Unity: Salden’s scaling connects all levels through multi-scale flow

The key insight is that defects are level-crossing structures. A parabolic line (Level 3) manifests as a syzygy
in transvectant space (Level 2), as a concentration of R≈0 intersections across fixations (Level 1), and as a topological
boundary between elliptic and hyperbolic regions (Level 4). The HACKS Ladder shows how the same geometric
reality appears differently at each level of description.
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FIG. 40. The HACKS Ladder. Left: Four-level hierarchy from Sampling (L1) through Algebraic (L2), Geometric (L3), to
Topological (L4). Each level has its HACKS component: Microsaccades, Hilbert, Arnold, Călugăreanu. Orange arrows show
defect-mediated transitions; Kolmogorov-Salden scaling provides vertical flow. Right: Three interaction types—horizontal
(within level, e.g., curvature flow), vertical (between adjacent levels), and diagonal (trans-level, e.g., Kanizsa triangle where
topology directly constrains sampling).

Conclusions: The Fundamental Necessity of Active Vision

“We do not see things as they are, we see things as we are.”
—Anäıs Nin

“The eye—it cannot choose but see; we cannot bid the ear be still; our bodies feel, where’er they be, against
or with our will.”
—William Wordsworth

What We Have Learned

This paper began with a 23-year-old mathematician in Erlangen, 1872, proposing that geometry is the study of
transformation invariants. It ends 153 years later with a surprising conclusion: to see invariants, we must move.

Let us summarize the journey:

The Question: How does the visual system detect geometric singularities—the parabolic lines that mark bound-
aries between convex and saddle regions on every smooth surface from a coffee cup to a human face?

The Surprise: Single-view detection is mathematically incomplete. The binocular resultant R = 0 detects not
only true parabolic lines but also false positives from lighting and perspective. No amount of clever computation on
a static image can distinguish intrinsic geometry from extrinsic artifacts.

The Solution: Active vision. The rapid small eye movements called microsaccades (3–5 per second during
fixation) provide multiple viewpoints. False positives shift with each viewpoint; true geometry stays fixed. Temporal
intersection filters artifacts and reveals reality.
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The Implication: Seeing is not passive reception but active exploration. Gibson was right: “Perception is the
achievement of an active observer in an environment.” Our mathematical analysis proves this is not just philosophy
but necessity.

The Theorems

We state our main results formally:
This paper establishes a fundamental result connecting differential geometry, binocular vision, and active perception:

Theorem .31 (Incompleteness of Single-View Detection). For binocular vision with perspective projection, single-
fixation detection of parabolic lines is mathematically incomplete. The binocular resultant R = det(∇IL,∇IR) = 0
includes:

1. True parabolic lines {K = 0} (intrinsic, view-invariant)

2. False positives E from lighting and perspective (extrinsic, view-dependent)

No single viewpoint can distinguish these without additional information.

Theorem .32 (Microsaccade Sufficiency). Temporal intersection across N microsaccade fixations converges to the
true parabolic structure:

lim
N→∞

N⋂
i=1

{Ri = 0} = {K = 0} (180)

because false positives Ei are view-dependent and their intersection has measure zero, while K = 0 is view-invariant
and preserved.

Implications

1. Mathematical: The warping transformation M = JR · J−1
L affects both first-order (gradient) and second-

order (Hessian) differential structure. The relationship HR = MT · HL · M shows Gaussian curvature transforms
as KR ≈ det(M)2 · KL, but the binocular resultant R depends on intensity gradients (first-order), not curvature
(second-order), creating the fundamental mismatch.

2. Biological: Microsaccades are not noise but essential computation. The visual system solves an ill-posed inverse
problem—recovering intrinsic geometry from extrinsically contaminated measurements—through active temporal sam-
pling. This provides the first rigorous mathematical justification for Gibson’s ecological approach: “Perception is not
the achievement of a single glance but the outcome of an extended process of exploration.”

3. Computational: For computer vision systems, this suggests that multi-view integration is not merely helpful
but necessary for robust geometric singularity detection. Static stereo matching is fundamentally limited; temporal
sequences or multiple viewpoints are required.

4. Artistic: Our analysis of Henry Moore-inspired sculpture demonstrates that smooth organic forms with char-
acteristic “holes” exhibit complex parabolic line structure. The wandering attention pattern observed when viewing
such sculptures may reflect the visual system’s computational strategy for building geometric representations through
active sampling.

The HACKS Framework Contribution

The HACKS framework—Hilbert-Arnold-Călugăreanu-Kolmogorov-Salden—provides the mathematical language
for this analysis:

• Hilbert: Transvectant-based invariants and the resultant R = det(∇I1,∇I2)

• Arnold: Geometric interpretation of Jacobian transformations and defect densities

• Călugăreanu: Linking-number approach to non-integrability and topological defects
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• Kolmogorov: Dimension reduction enabling tractable analysis

• Salden: Multi-local differential invariants bridging theory to computation

Klein’s Erlangen Program sought geometry defined by transformation invariants. We have shown that for binocular
vision, the invariant (parabolic lines) can only be extracted through active transformation—moving the eyes—not
passive observation. This is a fundamental extension of Klein’s program: geometric invariants may require active
sampling to be computationally accessible, even when they are theoretically well-defined.

Future Directions

1. Experimental validation: Eye-tracking studies during sculpture viewing to test the predicted contour-
following gaze patterns

2. Neural implementation: How does visual cortex integrate information across microsaccades for geometry
perception?

3. Optimal sampling: What is the minimum number of fixations required for reliable detection at given noise
levels?

4. Extension to other singularities: Do ridge lines, umbilics, and other geometric features require similar active
sampling?

The unity of differential geometry, active vision, and computational perception revealed by this analysis suggests
deep connections between mathematical structure and biological function—connections that Klein intuited but could
not formalize, and that the HACKS framework now makes precise.

Coda: From Klein to HACKS Vision

We began in Erlangen, 1872, with a young mathematician’s vision of geometry as transformation invariance.
We traveled through Hilbert’s algebraic machinery, Kolmogorov and Arnold’s dimensional collapse, Călugăreanu’s
topological integrals, and Salden’s computational bridges. Along the way, we discovered something Klein could never
have anticipated: that his invariants, though perfectly well-defined mathematically, may be invisible to a passive
observer.

The eye must move. The mind must explore. Perception is not a photograph but a dance—a temporal integration
of multiple viewpoints, each incomplete, together revealing what no single glance can show.

Perhaps this is why we linger before a Henry Moore sculpture, why our eyes wander across its curves and through
its holes, why shape perception takes time and attention. We are not merely “looking”—we are computing, running
an algorithm written in the geometry of our eyes and the mathematics of our neurons.

The HACKS framework provides the language for this computation. From Klein’s transformations to Hilbert’s
invariants, from Arnold’s singularities to Călugăreanu’s linking numbers, from Kolmogorov’s superposition to Salden’s
scales—the pieces assemble into a coherent whole. Not just a theory of what geometric properties are, but a theory
of how they can be seen.

We see not with the eye, but through it.
—William Blake
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